Menu Close

Category: Integration

dx-tan-x-1-3-

Question Number 124004 by john_santu last updated on 30/Nov/20 $$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}\:?\: \\ $$ Answered by liberty last updated on 30/Nov/20 $${T}\:=\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}\:;\:\left[\:{let}\:{u}^{\mathrm{3}} =\mathrm{tan}\:^{\mathrm{2}} {x}\:\wedge\:{dx}\:=\frac{\mathrm{3}{u}^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{3}/\mathrm{2}} \:\left({u}^{\mathrm{3}} +\mathrm{1}\right)}{du}\:\right]…

0-x-2-1-x-2-2-dx-

Question Number 123998 by john_santu last updated on 30/Nov/20 $$\:\int_{\:\mathrm{0}} ^{\:\infty} \:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\: \\ $$ Answered by liberty last updated on 30/Nov/20 $$\:{substituting}\:{x}\:=\:\mathrm{tan}\:{q}\:{with}\:{upper}\:{limit}\:\frac{\pi}{\mathrm{2}}…

Question-123977

Question Number 123977 by mnjuly1970 last updated on 29/Nov/20 Answered by mathmax by abdo last updated on 29/Nov/20 $$\mathrm{let}\:\mathrm{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}\right)\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{A}\:=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)\:\mathrm{also} \\ $$$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{e}^{\mathrm{ix}}…

xe-x-2-2-dx-

Question Number 189496 by Tawa11 last updated on 17/Mar/23 $$\int\:\mathrm{xe}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \:\mathrm{dx} \\ $$ Answered by BaliramKumar last updated on 18/Mar/23 $${let}\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:=\:{y} \\ $$$$\frac{\mathrm{2}{x}}{\mathrm{2}}\:=\:\frac{{dy}}{{dx}}\:\Rightarrow\:{xdx}\:=\:{dy}…

0-e-x-cos-x-ln-x-dx-f-a-0-e-x-cos-x-x-a-dx-Re-0-e-x-e-ix-x-a-dx-Re-0-

Question Number 189489 by mnjuly1970 last updated on 17/Mar/23 $$ \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} {e}^{\:−{x}} {cos}\left({x}\right){ln}\left({x}\right){dx}=? \\ $$$$\:\:\:\:\:−−− \\ $$$$\:\:\:\:\:\:{f}\:\left({a}\:\right)=\:\int_{\mathrm{0}} ^{\:\infty} {e}^{\:−{x}} {cos}\left({x}\right){x}^{\:{a}} \:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…

nice-calculus-prove-that-pi-4-pi-4-pi-4x-tan-x-1-tan-x-dx-piln-2-pi-2-4-

Question Number 123937 by mnjuly1970 last updated on 29/Nov/20 $$\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:\:\:{calculus}… \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\int_{\frac{−\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\pi−\mathrm{4}{x}\right){tan}\left({x}\right)}{\mathrm{1}−{tan}\left({x}\right)}{dx}\overset{???} {=}\pi{ln}\left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$ Answered by Dwaipayan…

1-x-x-1-tan-1-x-2-9-dx-

Question Number 123921 by john_santu last updated on 29/Nov/20 $$\int\:\frac{\mathrm{1}}{\:\sqrt{{x}}\:\left({x}+\mathrm{1}\right)\left(\left(\mathrm{tan}^{−\mathrm{1}} \sqrt{{x}}\right)^{\mathrm{2}} +\mathrm{9}\right)}{dx} \\ $$ Answered by mindispower last updated on 29/Nov/20 $$=\int\frac{\mathrm{2}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({tan}^{−} \left({t}\right)^{\mathrm{2}} +\mathrm{9}\right)}\:…

x-1-x-4-2x-3-x-2-2x-1-x-2-x-1-dx-

Question Number 123920 by john_santu last updated on 29/Nov/20 $$\:\int\:\frac{\left({x}−\mathrm{1}\right)\sqrt{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}\:{dx}\:? \\ $$ Answered by liberty last updated on 29/Nov/20 $$\left(\bullet\right)\:\frac{{x}−\mathrm{1}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}\:=\:\frac{{x}^{\mathrm{2}}…