Menu Close

Category: Integration

4x-1-2x-2-3x-2-dx-

Question Number 123793 by liberty last updated on 28/Nov/20 $$\:\:\int\:\frac{\mathrm{4}{x}−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}}\:{dx}\:? \\ $$ Answered by Dwaipayan Shikari last updated on 28/Nov/20 $$\int\frac{\mathrm{4}{x}−\mathrm{3}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}}+\mathrm{2}\int\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}}{dx} \\…

Question-189323

Question Number 189323 by mnjuly1970 last updated on 14/Mar/23 Answered by witcher3 last updated on 14/Mar/23 $$\Leftrightarrow\Sigma\frac{\Gamma\left(\mathrm{n}\right)\Gamma\left(\mathrm{n}\right)}{\Gamma\left(\mathrm{2n}\right).\mathrm{2}^{−\mathrm{n}} }=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\beta\left(\mathrm{n},\mathrm{n}\right)}{\mathrm{2}^{−\mathrm{n}} } \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}}…

0-1-3x-3-x-2-2x-4-x-2-3x-2-dx-

Question Number 58250 by Tawa1 last updated on 20/Apr/19 $$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\left(\frac{\mathrm{3x}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:−\:\mathrm{4}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{2}}}\right)\:\mathrm{dx} \\ $$ Answered by MJS last updated on 21/Apr/19 $$\underset{\mathrm{0}}…

i-dx-ax-2-bx-c-3-2-

Question Number 58240 by salaw2000 last updated on 20/Apr/19 $$\mathrm{i}=\int\mathrm{dx}/\left(\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$ Commented by maxmathsup by imad last updated on 21/Apr/19 $${let}\:{I}\:=\int\:\:\frac{{dx}}{\left({ax}^{\mathrm{2}} \:+{bx}\:+{c}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{let}\:{p}\left({x}\right)={ax}^{\mathrm{2}}…

0-1-3x-3-x-2-2x-4-x-2-3x-2-dx-

Question Number 58238 by Tawa1 last updated on 20/Apr/19 $$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\left(\frac{\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:−\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\mathrm{2}\boldsymbol{\mathrm{x}}\:−\:\mathrm{4}}{\:\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{3}\boldsymbol{\mathrm{x}}\:+\:\mathrm{2}}}\right)\:\:\boldsymbol{\mathrm{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

advanced-calculus-prove-that-n-1-2n-1-4-n-2n-1-ln-2-euler-mascheroni-constant-

Question Number 123764 by mnjuly1970 last updated on 28/Nov/20 $$\:\:\:\:\:\:\:\:\:\:\:\:….\:{advanced}\:\:{calculus}\:… \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}:::: \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{4}^{{n}\:} \:\left(\mathrm{2}{n}+\mathrm{1}\right)}\right\}={ln}\left(\mathrm{2}\right)−\gamma \\ $$$$\:\:\:\:\:\:\:\:\gamma::\:\:{euler}−{mascheroni} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{constant} \\ $$ Answered by…