Menu Close

Category: Integration

0-pi-2-sin-x-1-sin-2x-dx-

Question Number 220770 by mnjuly1970 last updated on 18/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left({x}\right)}{\:\sqrt{\mathrm{1}\:+\sqrt{{sin}\left(\mathrm{2}{x}\right)}}}{dx}\: \\ $$ Answered by Ghisom last updated on 21/May/25 $${F}\left({x}\right)=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}}…

xdx-1-cosx-2-

Question Number 220676 by fantastic last updated on 17/May/25 $$\int\:\frac{{xdx}}{\left(\mathrm{1}−{cosx}\right)^{\mathrm{2}} } \\ $$ Answered by Frix last updated on 17/May/25 $${I}=\int\frac{{x}}{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:\overset{\left[\mathrm{by}\:\mathrm{parts}\right]} {=} \\ $$$$=−\frac{\left(\mathrm{2}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}+\mathrm{cos}\:{x}\right)^{\mathrm{2}}…

1-2-2x-2-2x-1-2x-2-dx-

Question Number 220644 by Nicholas666 last updated on 17/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{2}{x}\:−\:\mathrm{1}\right)\centerdot\left(\mathrm{2}{x}\:+\:\mathrm{2}\right)}}\:{dx} \\ $$$$ \\ $$ Answered by Ghisom last updated on…

x-x-2-1-dx-

Question Number 220677 by fantastic last updated on 17/May/25 $$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}\:}}{dx} \\ $$ Answered by Frix last updated on 17/May/25 $$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dx}\:\overset{\left[{t}=\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\right]} {=} \\…

E-z-2-x-2-y-2-dV-with-the-boundaries-of-the-integration-region-E-defined-by-x-2-y-2-z-2-4-x-2-y-2-1-z-

Question Number 220674 by Nicholas666 last updated on 17/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\int\int_{\:{E}\:} \:\:\frac{{z}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }}\:\:{dV} \\ $$$$\:\:\:\:\:\mathrm{with}\:\mathrm{the}\:\mathrm{boundaries}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integration}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathrm{region}\:{E}\:\mathrm{defined}\:\mathrm{by};\: \\ $$$$\:\:\:\:\:\:\bullet\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} +\:{z}^{\mathrm{2}} \:\leqslant\:\mathrm{4}…

Prove-that-inequality-0-1-ln-1-x-2-1-x-2-dx-lt-0-1-x-ln-1-x-2-1-x-2-dx-1-3-

Question Number 220544 by Nicholas666 last updated on 15/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{inequality}}; \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx}\:<\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}\:\mathrm{ln}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)}{\mathrm{1}\:+\:{x}^{\mathrm{2}} \:}\:{dx}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:\:\:\: \\ $$$$ \\…