Question Number 123767 by oustmuchiya@gmail.com last updated on 28/Nov/20 Answered by physicstutes last updated on 28/Nov/20 $$\:\:\boldsymbol{\mathrm{s}}\:=\:\mathrm{2}{t}\:+\:\mathrm{3}\:\mathrm{sin}\:\mathrm{2}{t} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Initiat}\:\mathrm{position}\:\mathrm{occurs}\:\mathrm{at}\:{t}\:=\:\mathrm{0}\:\mathrm{s} \\ $$$$\Rightarrow\:\boldsymbol{\mathrm{s}}_{\mathrm{0}} \:=\:\mathrm{2}\left(\mathrm{0}\right)\:+\:\mathrm{3}\:\mathrm{sin}\:\mathrm{2}\left(\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{s}}_{\mathrm{0}} \:=\:\mathrm{0}\:\mathrm{m}…
Question Number 189293 by Rupesh123 last updated on 14/Mar/23 Answered by Sutrisno last updated on 14/Mar/23 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}} {x}}{\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}}+\frac{{cos}^{\mathrm{2}} {x}}{{sin}^{\mathrm{2}} {x}}}{dx} \\ $$$$\int_{\mathrm{0}}…
Question Number 58222 by salahahmed last updated on 20/Apr/19 $$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{x}} {dx} \\ $$ Commented by maxmathsup by imad last updated on 21/Apr/19 $${we}\:{have}\:{x}^{{x}}…
Question Number 58220 by maxmathsup by imad last updated on 20/Apr/19 $${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}\right)\sqrt{−{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{3}}} \\ $$$$ \\ $$ Answered by tanmay last updated on 20/Apr/19…
Question Number 58212 by maxmathsup by imad last updated on 20/Apr/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}\left[{t}\right]} \:{sin}\left({xt}\right){dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:{U}_{{n}} ={nf}\left({n}\right)\:\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \:\:\:{and}\:{study}\:{the}\:{convergence}\:{of}\:\Sigma{U}_{{n}} \\ $$ Terms…
Question Number 123745 by mnjuly1970 last updated on 27/Nov/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:\:{calculus}… \\ $$$$\:\:{evaluation}\:\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){log}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:{by}\:{using}\:{the}\:{euler}\:{beta}\:{and}\:{gamma}\:{function}: \\ $$$$\:\:\:\:\:\:\:\:\beta\left({p},\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} \left({x}\right){dx} \\ $$$$\:\:\:\frac{{d}\beta\left({p},\frac{\mathrm{1}}{\mathrm{2}}\right)}{{dp}}\:=\mathrm{2}\int_{\mathrm{0}}…
Question Number 189266 by cortano12 last updated on 14/Mar/23 $$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:\mathrm{x}}}{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}\:\mathrm{dx}\:=? \\ $$ Answered by MJS_new last updated on 14/Mar/23 $$\int\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}{\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}\:\rightarrow\:{dx}=\mathrm{3cos}^{\mathrm{2}} \:{x}\:\sqrt[{\mathrm{3}}]{\mathrm{tan}^{\mathrm{2}}…
Question Number 58187 by maxmathsup by imad last updated on 19/Apr/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left({x}+\frac{{x}}{{t}}\right){dt}\:\:\:{withx}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{give}\:{f}^{'} \left({x}\right)\:{at}\:{form}\:{of}\:{integral}\:{and}\:{find}\:{its}\:{value} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){dt}\:\:\:{and}\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left(\mathrm{2}+\frac{\mathrm{2}}{{t}}\right){dt}\:.…
Question Number 58185 by maxmathsup by imad last updated on 19/Apr/19 $${find}\:\int\:\:\:\frac{{xdx}}{{cosx}\:+{sin}\left(\mathrm{2}{x}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 58184 by maxmathsup by imad last updated on 19/Apr/19 $${find}\:\:\int\:\:\:\:\:\:\frac{{xdx}}{{sinx}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com