Question Number 57666 by maxmathsup by imad last updated on 09/Apr/19 $$\left.\mathrm{1}\right)\:{calculate}\:{f}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{t}^{\mathrm{2}} \:+\mathrm{2}{sin}\theta{t}\:+\mathrm{1}}{dt}\:\:\:\:{with}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{t}^{\mathrm{2}} \:+\mathrm{2}\left({sin}\theta\right){t}\:+\mathrm{1}}{d}\theta \\ $$$$\left.\mathrm{3}\right)\:{find}\:{also}\:{h}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} \:+\mathrm{2}\left({sin}\theta\right){t}\:+\mathrm{1}}}{dt}…
Question Number 57665 by maxmathsup by imad last updated on 09/Apr/19 $${let}\:{f}\left({a}\right)\:=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{{a}+{tan}^{\mathrm{2}} {x}}{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{also}\:{g}\left({a}\right)\:=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\frac{{dx}}{\:\sqrt{{a}+{tan}^{\mathrm{2}} {x}}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}}…
Question Number 57653 by MJS last updated on 09/Apr/19 $$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:{I}? \\ $$$${I}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)\:{dx} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19 Commented by…
Question Number 123177 by shree last updated on 23/Nov/20 $${lebesgue}\:{measure}\:{on}\:\left[\mathrm{0}\:\mathrm{1}\right]\:{is}\:{finite}\:?\:{true}\:{or}\:{false}\:{give}\:{reason} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 123159 by Lordose last updated on 23/Nov/20 $$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{log}^{\mathrm{2}} \left(\mathrm{tan}\left(\mathrm{x}\right)\right)\mathrm{dx} \\ $$ Answered by mnjuly1970 last updated on 23/Nov/20 $${ans}:=\frac{\pi^{\mathrm{3}} }{\mathrm{8}} \\…
Question Number 123154 by liberty last updated on 23/Nov/20 Answered by benjo_mathlover last updated on 23/Nov/20 $$\:{let}\:{t}=\mathrm{sin}\:\:{q}\:\Rightarrow{dt}\:=\:\mathrm{cos}\:{q}\:{dq} \\ $$$$\eta\:\left({x}\right)=\:\int\:\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {q}}\:\left(\mathrm{cos}\:{q}\:{dq}\right) \\ $$$$\eta\:\left({x}\right)=\:\int\left(\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{q}}{\mathrm{2}}\right)\:{dq}\: \\ $$$$\eta\:\left({x}\right)=\:\frac{{q}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{q}}{\mathrm{2}}\:+\:{c}\: \\…
Question Number 123060 by mnjuly1970 last updated on 22/Nov/20 $$\:\:\:\:\:\:\:\:\:\:….\:\:\:{nice}\:\:{calculus}\:…. \\ $$$$\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\overset{???} {=}\int_{−\infty} ^{\:\infty} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{e}^{{x}} \right)\left(\mathrm{1}+{e}^{−{x}} \right)}{dx} \\ $$ Answered by mindispower…
Question Number 123037 by benjo_mathlover last updated on 22/Nov/20 $$\:\:\int\:\frac{\sqrt{\mathrm{1}−{x}}}{\mathrm{1}−\sqrt{{x}}}\:{dx} \\ $$$$ \\ $$ Answered by MJS_new last updated on 22/Nov/20 $$\int\frac{\sqrt{\mathrm{1}−{x}}}{\mathrm{1}−\sqrt{{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\sqrt{\mathrm{1}−{x}}}{\mathrm{1}−\sqrt{{x}}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}}\left(\mathrm{1}−\sqrt{{x}}\right)\sqrt{\mathrm{1}−{x}}\right] \\…
Question Number 123034 by benjo_mathlover last updated on 21/Nov/20 Answered by mathmax by abdo last updated on 21/Nov/20 $$\chi\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\Rightarrow\chi=_{\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}} \:\:\:−\int_{\mathrm{0}} ^{\infty} \:\:\frac{−\mathrm{lnt}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}}…
Question Number 123033 by benjo_mathlover last updated on 21/Nov/20 $${Evaluate}\:{the}\:{integral}\: \\ $$$$\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}^{\mathrm{7}} }\:−\:\sqrt[{\mathrm{7}}]{\mathrm{1}−{x}^{\mathrm{3}} }\:{dx}\:. \\ $$ Commented by MJS_new last updated on 22/Nov/20…