Menu Close

Category: Integration

1-findF-a-0-cos-ln-2-x-2-a-2-x-2-dx-witha-gt-0-2-find-the-value-of-0-cos-ln-2-x-2-4-x-2-dx-

Question Number 57490 by Abdo msup. last updated on 05/Apr/19 $$\left.\mathrm{1}\right){findF}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dx}\:\:{witha}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{4}+{x}^{\mathrm{2}} }{dx}. \\ $$ Commented…

advanced-calculus-calculate-I-0-pi-x-1-sin-x-cos-x-dx-

Question Number 123023 by mnjuly1970 last updated on 21/Nov/20 $$\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$${calculate}::: \\ $$$$\:\:\:\:\:\mathrm{I}:\overset{???} {=}\:\int_{\mathrm{0}} ^{\:\pi} \frac{{x}}{\mathrm{1}−{sin}\left({x}\right){cos}\left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………………………….. \\ $$ Answered by mnjuly1970 last…

0-pi-x-sin-x-3-sin-2-x-dx-

Question Number 122979 by bemath last updated on 21/Nov/20 $$\:\:\int_{\mathrm{0}} ^{\pi} \frac{{x}\:\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{3}+\mathrm{sin}\:^{\mathrm{2}} {x}}}\:{dx}\:? \\ $$ Answered by liberty last updated on 21/Nov/20 $$\psi\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{x}\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{4}−\mathrm{cos}\:^{\mathrm{2}}…

evaluate-0-pi-dx-a-bcosx-a-gt-0-and-deduce-that-0-pi-dx-a-bcos-x-2-pia-a-2-b-2-3-2-a-2-gt-b-2-and-0-pi-cos-x-dx-a-bcos-x-2-

Question Number 188511 by universe last updated on 02/Mar/23 $$\:\:\:{evaluate} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{{a}+{b}\mathrm{cos}{x}\:}\:\:\:\:\:\:,\:\:\:{a}\:>\:\mathrm{0} \\ $$$$\:\:\:{and}\:{deduce}\:{that} \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{\left({a}+{b}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:\:=\:\:\:\frac{\pi{a}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\:;\:\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}}…

x-1-x-4-dx-

Question Number 122967 by bemath last updated on 21/Nov/20 $$\:\:\int\:\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:{dx}\: \\ $$ Answered by bobhans last updated on 21/Nov/20 $${let}\:{x}^{\mathrm{2}} \:=\:\mathrm{sin}\:{t}\:\Rightarrow\:\mathrm{2}{x}\:{dx}\:=\:\mathrm{cos}\:{t}\:{dt} \\ $$$$\emptyset\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{cos}\:{t}\:{dt}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {t}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:{dt}\:…