Menu Close

Category: Integration

1-calculate-I-dx-x-2-i-and-J-dx-x-2-i-2-find-the-value-of-dx-x-4-1-

Question Number 56629 by maxmathsup by imad last updated on 19/Mar/19 $$\left.\mathrm{1}\right)\:{calculate}\:{I}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}}\:\:\:{and}\:{J}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$…

1-5x-2-2x-4-dx-

Question Number 187703 by Tawa11 last updated on 20/Feb/23 $$\int\:\frac{\mathrm{1}}{\mathrm{5x}^{\mathrm{2}} \:\:−\:\:\mathrm{2x}\:\:−\:\:\mathrm{4}}\:\mathrm{dx} \\ $$ Answered by MikeH last updated on 20/Feb/23 $$=\:\frac{\mathrm{1}}{\mathrm{5}}\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\frac{\mathrm{2}}{\mathrm{5}}{x}−\frac{\mathrm{4}}{\mathrm{5}}}\:{dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{5}}\int\frac{\mathrm{1}}{\left({x}−\frac{\mathrm{1}}{\mathrm{5}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{25}}−\frac{\mathrm{4}}{\mathrm{5}}}{dx}…

Question-122160

Question Number 122160 by benjo_mathlover last updated on 14/Nov/20 Answered by liberty last updated on 14/Nov/20 $$\:\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\left[\:\mathrm{f}\left(\mathrm{x}\right)+\mathrm{1}\:\right]\:\mathrm{dx}\:−\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\left[\:\mathrm{f}\left(\mathrm{t}\right)+−\mathrm{1}\right]\:\mathrm{dt}\:= \\ $$$$\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}−\int_{\mathrm{0}}…

nice-calculus-prove-that-0-pi-2-tan-1-ptan-x-tan-1-qtan-x-tan-x-cot-x-dx-pi-2-log-p-q-p-q-gt-0-m-n-

Question Number 122159 by mnjuly1970 last updated on 14/Nov/20 $$\:\:\:\:\:…\:{nice}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:\:{that}:: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left\{{tan}^{−\mathrm{1}} \left({ptan}\left({x}\right)\right)−{tan}^{−\mathrm{1}} \left({qtan}\left({x}\right)\right)\right\}\left({tan}\left({x}\right)+{cot}\left({x}\right)\right){dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\:{log}\left(\frac{{p}}{{q}}\right)\:\:\:\left(\:\:\:\:{p}\:,\:{q}\:>\mathrm{0}\:\:\:\right) \\ $$$$\:\:\:\:{m}.{n}. \\ $$ Answered…

1-2-ln-x-x-2-dx-

Question Number 122108 by bemath last updated on 14/Nov/20 $$\:\:\:\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{ln}\:\left({x}\right)}{{x}^{\mathrm{2}} }\:{dx}\:? \\ $$ Answered by Dwaipayan Shikari last updated on 14/Nov/20 $$−\left[{log}\left({x}\right)\frac{\mathrm{1}}{{x}}\right]_{\mathrm{1}} ^{\mathrm{2}}…