Menu Close

Category: Integration

A-parabolic-refector-is-formed-by-revolving-the-arc-of-the-parabala-y-2-4ax-from-x-0-to-x-h-about-the-axis-If-the-diameter-of-the-reflector-is-2l-Show-that-the-area-of-the-reflecting-surface-is

Question Number 227055 by Spillover last updated on 28/Dec/25 $${A}\:{parabolic}\:{refector}\:{is}\:{formed}\:{by} \\ $$$${revolving}\:{the}\:{arc}\:{of}\:{the}\:{parabala} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{ax}\:\:{from}\:{x}=\mathrm{0}\:\:\:\:{to}\:\:{x}={h} \\ $$$${about}\:{the}\:{axis}.{If}\:{the}\:\:{diameter} \\ $$$${of}\:{the}\:{reflector}\:{is}\:\mathrm{2}{l}.{Show}\:{that} \\ $$$${the}\:{area}\:{of}\:{the}\:{reflecting}\:{surface}\:{is} \\ $$$$\frac{\pi{l}}{\mathrm{6}{h}^{\mathrm{2}} }\left\{\left({l}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}}…

Question-226995

Question Number 226995 by Spillover last updated on 24/Dec/25 Answered by Ghisom_ last updated on 24/Dec/25 $$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{sin}^{\mathrm{3}} \:{x}\:\mathrm{cos}^{\mathrm{5}} \:{x}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{\mathrm{2}} \:{x}\right)^{\mathrm{3}} }{dx}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}\right)\mathrm{sin}^{\mathrm{3}}…

Evaluate-x-2-2x-1-2x-3-3x-2-2x-dx-

Question Number 226818 by Spillover last updated on 16/Dec/25 $${Evaluate} \\ $$$$\int\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}}{dx} \\ $$ Answered by Frix last updated on 16/Dec/25 $$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}}−\frac{\mathrm{1}}{\mathrm{10}}\int\frac{{dx}}{{x}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{5}}\int\frac{{dx}}{\mathrm{2}{x}−\mathrm{1}}=…

By-using-concept-of-complex-number-show-that-tan-5-tan-5-10tan-3-5tan-5tan-4-10tan-2-1-

Question Number 226780 by Spillover last updated on 14/Dec/25 $${By}\:{using}\:{concept}\:{of}\:{complex} \\ $$$${number} \\ $$$${show}\:{that} \\ $$$$\mathrm{tan}\:\mathrm{5}\theta=\frac{\mathrm{tan}\:^{\mathrm{5}} \theta−\mathrm{10tan}\:^{\mathrm{3}} \theta+\mathrm{5tan}\:\theta}{\mathrm{5tan}\:^{\mathrm{4}} \theta−\mathrm{10tan}\:^{\mathrm{2}} \theta+\mathrm{1}} \\ $$ Answered by Frix…

Approximate-0-1-xe-x-2-dx-with-6-ordinates-Use-both-rules-Simpsons-and-Trapozoidal-rules-hence-evaluate-and-calculate-the-percentage-error-commetted-for-each-case-Give-comments-

Question Number 226776 by Spillover last updated on 14/Dec/25 $${Approximate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {xe}^{{x}^{\mathrm{2}} } {dx}\:{with}\:\mathrm{6}\:{ordinates}. \\ $$$${Use}\:{both}\:{rules}\:{Simpsons}\:{and} \\ $$$${Trapozoidal}\:{rules},{hence}\:{evaluate}\:{and} \\ $$$${calculate}\:{the}\:{percentage}\:{error} \\ $$$${commetted}\:{for}\:{each}\:{case}.{Give}\:{comments} \\ $$$$ \\…