Menu Close

Category: Integration

Question-219550

Question Number 219550 by Spillover last updated on 28/Apr/25 Answered by Nicholas666 last updated on 29/Apr/25 $${I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{7}} \right){ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right){lnx}}{dx}\:\:\:\:\:\:\: \\ $$$${I}\left({a}\right)=\int_{\mathrm{0}} ^{\:\infty}…

Question-219549

Question Number 219549 by Spillover last updated on 28/Apr/25 Answered by Nicholas666 last updated on 29/Apr/25 $$\int\frac{\mathrm{1}+{sin}\:{x}}{\mathrm{1}−{sinx}}{dx}=\mathrm{2}{tany}−{x}+{c} \\ $$$$\int\frac{\left(\mathrm{1}+{sin}\:{x}\right)^{\mathrm{2}} }{\mathrm{1}−{sin}^{\mathrm{2}} {x}}{dx}=\mathrm{2}\:{tan}\:{y}\:−{x}\:+{c} \\ $$$$\int\frac{\mathrm{1}+\mathrm{2}\:{sin}\:{x}+{sin}^{\mathrm{2}} {x}}{{cos}^{\mathrm{2}} {x}}{dx}=\mathrm{2}\:{tan}\:{y}\:−{x}+{c}…

I-n-0-1-0-1-0-1-ln-1-x-1-x-2-x-n-1-x-1-1-x-2-1-x-n-dx-1-dx-2-dx-n-

Question Number 219553 by Nicholas666 last updated on 28/Apr/25 $$ \\ $$$$\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} ….\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}_{\mathrm{1}} {x}_{\mathrm{2}} \:….{x}_{{n}} \right)}{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)….\left(\mathrm{1}−{x}_{{n}\:} \right)}\:{dx}_{\mathrm{1}}…