Question Number 219549 by Spillover last updated on 28/Apr/25 Answered by Nicholas666 last updated on 29/Apr/25 $$\int\frac{\mathrm{1}+{sin}\:{x}}{\mathrm{1}−{sinx}}{dx}=\mathrm{2}{tany}−{x}+{c} \\ $$$$\int\frac{\left(\mathrm{1}+{sin}\:{x}\right)^{\mathrm{2}} }{\mathrm{1}−{sin}^{\mathrm{2}} {x}}{dx}=\mathrm{2}\:{tan}\:{y}\:−{x}\:+{c} \\ $$$$\int\frac{\mathrm{1}+\mathrm{2}\:{sin}\:{x}+{sin}^{\mathrm{2}} {x}}{{cos}^{\mathrm{2}} {x}}{dx}=\mathrm{2}\:{tan}\:{y}\:−{x}+{c}…
Question Number 219552 by Nicholas666 last updated on 28/Apr/25 Answered by mr W last updated on 29/Apr/25 $$\int_{\mathrm{0}} ^{\mathrm{1}} {x}_{{k}} ^{\alpha} \mathrm{ln}\:\left({x}_{{k}} \right){dx}_{{k}} \\ $$$$=\frac{\mathrm{1}}{\alpha+\mathrm{1}}\int_{\mathrm{0}}…
Question Number 219553 by Nicholas666 last updated on 28/Apr/25 $$ \\ $$$$\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} ….\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}_{\mathrm{1}} {x}_{\mathrm{2}} \:….{x}_{{n}} \right)}{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)….\left(\mathrm{1}−{x}_{{n}\:} \right)}\:{dx}_{\mathrm{1}}…
Question Number 219554 by Nicholas666 last updated on 28/Apr/25 $$ \\ $$$$\:{I}_{{n}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} …\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} …{x}_{{n}} \right)^{{a}} }{\left(\mathrm{1}−{x}_{\mathrm{1}} {x}_{\mathrm{2}} …{x}_{{n}}…
Question Number 219509 by Nicholas666 last updated on 27/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{I}\:=\:\underset{\:\mathrm{1}} {\int}^{\:\mathrm{16}} \:\frac{\left({x}\:+\sqrt{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\frac{\mathrm{3}}{\mathrm{4}}} }\:{dx} \\ $$$$ \\ $$ Answered by SdC355 last updated…
Question Number 219506 by PragyanKhunte last updated on 27/Apr/25 $${Q}.\:{Integrate}\:\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} −{x}−\mathrm{3}}. \\ $$$$ \\ $$ Answered by SdC355 last updated on 27/Apr/25 $$ \\…
Question Number 219529 by Nicholas666 last updated on 27/Apr/25 $$ \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\:\:\frac{\mathrm{1}+{x}−{x}^{\mathrm{2}} +{x}^{\mathrm{3}} −{x}^{\mathrm{4}} −{x}^{\mathrm{5}} }{\mathrm{1}−{x}^{\mathrm{7}} }\:\:\:{dx} \\ $$$$ \\ $$ Commented by…
Question Number 219522 by Nicholas666 last updated on 27/Apr/25 $$ \\ $$$$\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\infty} \:\frac{\mathrm{10}{x}^{\mathrm{17}} {e}^{\mathrm{2}{x}} \left({e}^{\mathrm{2}{x}} −\mathrm{1}\right)+{x}^{\mathrm{17}} {e}^{{x}} \left({e}^{\mathrm{4}{x}} −\mathrm{1}\right)}{\left({e}^{{x}} −\mathrm{1}\right)^{\mathrm{6}} }\:{dx}\:\:\: \\ $$$$ \\…
Question Number 219482 by Nicholas666 last updated on 26/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{{e}^{−{x}^{\mathrm{2}} } \mathrm{cos}\:\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$ \\ $$ Commented by Nicholas666 last updated on…
Question Number 219453 by Nicholas666 last updated on 25/Apr/25 $$ \\ $$$$\:\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \int_{\mathrm{1}} ^{\:\mathrm{2}} \int_{\mathrm{1}} ^{\:\mathrm{2}} \int_{\mathrm{1}} ^{\:\mathrm{2}} \:\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}\:} +{x}_{\mathrm{3}} −{x}_{\mathrm{4}} }{{x}_{\mathrm{1}} +{x}_{\mathrm{2}}…