Question Number 219447 by Nicholas666 last updated on 25/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{Lim}_{{x}\rightarrow\infty} \underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{−{x}}{{i}}\right)^{{i}} \\ $$$$ \\ $$ Answered by MrGaster last updated on…
Question Number 219434 by SdC355 last updated on 25/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219456 by Nicholas666 last updated on 25/Apr/25 $$ \\ $$$$\:\int_{\mathrm{1}} ^{\:\mathrm{3}} \int_{\mathrm{1}} ^{\:\mathrm{3}} \int_{\mathrm{1}} ^{\:\mathrm{3}} \int_{\mathrm{1}} ^{\:\mathrm{3}} \int_{\mathrm{1}} ^{\:\mathrm{3}} \:\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +{x}_{\mathrm{4}}…
Question Number 219458 by Nicholas666 last updated on 25/Apr/25 $$ \\ $$$$\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \int_{\mathrm{1}} ^{\:\mathrm{2}} \int_{\mathrm{1}} ^{\:\mathrm{2}} \int_{\mathrm{1}} ^{\:\mathrm{2}} \:{x}_{\mathrm{1}} ^{\:\mathrm{2}} {x}_{\mathrm{2}} ^{\:\mathrm{3}} {x}_{\mathrm{3}} ^{\:\mathrm{4}}…
Question Number 219428 by Nicholas666 last updated on 24/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\:,\:{b},\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{\:−\infty} ^{\:\infty} \frac{\left({e}^{{iax}} −\mathrm{1}\right)\left({e}^{{ibx}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$ Commented by…
Question Number 219384 by mnjuly1970 last updated on 23/Apr/25 Answered by SdC355 last updated on 24/Apr/25 $$\int\:\:\:\frac{\mathrm{d}{x}}{\:\sqrt{{x}}}\:\mathrm{cos}^{\mathrm{3}} \left({x}\right)\mathrm{sin}\left({x}\right)={I} \\ $$$$\int\:\:\:\frac{\mathrm{d}{x}}{\:{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{3}} \left({x}\right)\mathrm{sin}\left({x}\right)=\int\:\:\:\frac{\mathrm{d}{x}}{{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{cos}\left({x}\right)\mathrm{sin}\left({x}\right) \\ $$$$\int\:\:\frac{\mathrm{d}{x}}{\:\mathrm{2}{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{sin}\left(\mathrm{2}{x}\right)=\int\:\:\mathrm{d}{x}\:\frac{{e}^{−{xt}}…
Question Number 219316 by Nicholas666 last updated on 23/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{Prove}; \\ $$$$\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\infty} \frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}^{\lfloor\boldsymbol{{x}}\rfloor} } \:+\:\left\{{x}\right\}}\:{dx}\:=\:{ln}\mathrm{2}\:\:\: \\ $$ Answered by vnm last updated…
Question Number 219305 by Nicholas666 last updated on 22/Apr/25 $$ \\ $$$$\:\:\:\:\:\:{Prove}; \\ $$$$\:\:\:{I}_{\mathrm{0}} \left({x}\right)\:=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \:{e}^{\:{x}\:{cox}\left(\theta\right)} \:{d}\theta\:; \\ $$$$\:\:\:{x}^{\mathrm{2}} {I}_{\mathrm{0}} ^{''} \left({x}\right)\:+\:{xI}'_{\mathrm{0}} \left({x}\right)\:−\:{x}^{\mathrm{2}} {I}_{\mathrm{0}}…
Question Number 219268 by MrGaster last updated on 21/Apr/25 $${f}\left({x},{y}\right)=\mathrm{ln}\int_{\mathrm{0}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {e}^{{t}^{\mathrm{2}} } {dt},{f}\left({x}\right)\left(\mathrm{1},\mathrm{2}\right)=? \\ $$ Answered by zetamaths last updated on 21/Apr/25…
Question Number 219193 by fantastic last updated on 20/Apr/25 $$\int\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}\:.\frac{\mathrm{1}}{{x}+\mathrm{3}}\:{dx}=? \\ $$ Answered by aleks041103 last updated on 20/Apr/25 $$\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}={u}=\mathrm{1}−\frac{\mathrm{1}}{{x}+\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{1}−{u}}−\mathrm{2}=\frac{\mathrm{2}{u}−\mathrm{1}}{\mathrm{1}−{u}} \\ $$$$\Rightarrow{dx}=\frac{\mathrm{2}\left(\mathrm{1}−{u}\right)−\left(−\mathrm{1}\right)\left(\mathrm{2}{u}−\mathrm{1}\right)}{\left(\mathrm{1}−{u}\right)^{\mathrm{2}} }{du}=…