Menu Close

Category: Integration

I-n-0-1-0-1-0-1-ln-1-x-1-x-2-x-n-1-x-1-1-x-2-1-x-n-dx-1-dx-2-dx-n-

Question Number 219553 by Nicholas666 last updated on 28/Apr/25 $$ \\ $$$$\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} ….\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}_{\mathrm{1}} {x}_{\mathrm{2}} \:….{x}_{{n}} \right)}{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)….\left(\mathrm{1}−{x}_{{n}\:} \right)}\:{dx}_{\mathrm{1}}…

L-sinx-0-e-sx-sinx-dx-0-e-sx-e-ix-e-ix-2i-dx-1-2i-0-e-s-i-x-dx-0-e-s-i-x-dx-1-2i-1-s-i-e-s-i-x-1-s-i-e-s-i-x-0-1-

Question Number 219449 by Lukos last updated on 25/Apr/25 $${L}\left\{{sinx}\right\}=\int_{\mathrm{0}} ^{\infty} {e}^{−{sx}} {sinx}\:{dx}=\int_{\mathrm{0}} ^{\infty} {e}^{−{sx}} \frac{{e}^{{ix}} −{e}^{−{ix}} }{\mathrm{2}{i}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left[\int_{\mathrm{0}} ^{\infty} {e}^{−\left({s}−{i}\right){x}} {dx}\:\:−\int_{\mathrm{0}} ^{\infty} {e}^{−\left({s}+{i}\right){x}}…