Menu Close

Category: Integration

Prove-I-0-x-1-pi-0-pi-e-x-cox-d-x-2-I-0-x-xI-0-x-x-2-I-0-x-0-

Question Number 219305 by Nicholas666 last updated on 22/Apr/25 $$ \\ $$$$\:\:\:\:\:\:{Prove}; \\ $$$$\:\:\:{I}_{\mathrm{0}} \left({x}\right)\:=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \:{e}^{\:{x}\:{cox}\left(\theta\right)} \:{d}\theta\:; \\ $$$$\:\:\:{x}^{\mathrm{2}} {I}_{\mathrm{0}} ^{''} \left({x}\right)\:+\:{xI}'_{\mathrm{0}} \left({x}\right)\:−\:{x}^{\mathrm{2}} {I}_{\mathrm{0}}…

x-1-x-2-1-x-3-dx-

Question Number 219193 by fantastic last updated on 20/Apr/25 $$\int\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}\:.\frac{\mathrm{1}}{{x}+\mathrm{3}}\:{dx}=? \\ $$ Answered by aleks041103 last updated on 20/Apr/25 $$\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}={u}=\mathrm{1}−\frac{\mathrm{1}}{{x}+\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{1}−{u}}−\mathrm{2}=\frac{\mathrm{2}{u}−\mathrm{1}}{\mathrm{1}−{u}} \\ $$$$\Rightarrow{dx}=\frac{\mathrm{2}\left(\mathrm{1}−{u}\right)−\left(−\mathrm{1}\right)\left(\mathrm{2}{u}−\mathrm{1}\right)}{\left(\mathrm{1}−{u}\right)^{\mathrm{2}} }{du}=…

f-t-0-t-1-2-i-t-1-d-

Question Number 219234 by Nicholas666 last updated on 22/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{f}\left({t}\right)=\int_{\mathrm{0}\:} ^{\:{t}} \:\frac{\zeta\left(\mathrm{1}/\mathrm{2}\:\:+\:\:{i}\tau\right)}{\:\sqrt{{t}\:−\:\tau\:\:+\:\mathrm{1}}}\:{d}\tau \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

0-sin-n-n-m-dn-pi-m-2-m-0-m-2-1-n-2-m-1-m-Proof-this-formula-

Question Number 219077 by zetamaths last updated on 19/Apr/25 $$\int_{\mathrm{0}} ^{+\infty} \left(\frac{{sin}\left({n}\right)}{{n}}\right)^{{m}} {dn}=\pi\centerdot\frac{{m}}{\mathrm{2}^{{m}} }\centerdot\underset{\phi=\mathrm{0}} {\overset{{m}/\mathrm{2}} {\sum}}\left(−\mathrm{1}\right)^{\emptyset} \centerdot\frac{\left({n}−\mathrm{2}\phi\right)^{{m}−\mathrm{1}} }{\left({m}−\phi\right)!\centerdot\phi!}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Proof}\:{this}\:{formula} \\ $$ Terms of Service Privacy Policy…

1-1-2m-k-1-m-1-k-1-k-m-2-m-k-m-k-1-4-Proof-this-formula-

Question Number 219078 by zetamaths last updated on 19/Apr/25 $$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{m}}\right).\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \centerdot{k}\centerdot\frac{\left({m}!\right)^{\mathrm{2}} }{\left({m}−{k}\right)!\left({m}+{k}\right)!}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\:{Proof}\:{this}\:{formula} \\ $$ Answered by MrGaster last updated on 19/Apr/25 $$\mathrm{Let}\:{S}\left({m}\right)\underset{{k}=\mathrm{1}} {\overset{{m}}…

prove-0-3-f-J-0-x-J-0-y-J-0-z-1-x-2-y-2-z-2-C-R-3-f-1-x-2-y-2-z-2-2-1-2-

Question Number 218896 by Nicholas666 last updated on 17/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{prove}}; \\ $$$$\:\mid\int\int\int_{\left[\mathrm{0},\infty\right]^{\mathrm{3}} } \boldsymbol{{f}}\frac{\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{x}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{y}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{z}}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} }\mid\leqslant\boldsymbol{{C}}\left(\int\int\int_{\mathbb{R}_{+} ^{\mathrm{3}} } \mid\boldsymbol{{f}}\mid\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}}…