Menu Close

Category: Integration

Calculate-the-following-integral-xJ-0-x-2-y-2-J-1-y-2-z-2-J-2-z-2-x-2-e-x-2-y-2-z-2-dxdydz-where-J-n-u-is-the-Bas

Question Number 218879 by Nicholas666 last updated on 16/Apr/25 $$ \\ $$$$\:\:\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{integral}};\:\:\:\:\:\: \\ $$$$\:\:\int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \boldsymbol{{xJ}}_{\mathrm{0}} \left(\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }\right)\boldsymbol{{J}}_{\mathrm{1}} \left(\sqrt{\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}}…

Calculate-the-following-integral-0-0-0-J-ax-J-by-J-cz-x-2-y-2-z-2-e-p-x-2-y-2-z-2-dxdydz-where-J-u-is-the-Bassel-f

Question Number 218872 by Nicholas666 last updated on 16/Apr/25 $$ \\ $$$$\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{integral}}; \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{J}}_{\boldsymbol{\alpha}} \left(\boldsymbol{{ax}}\right)\boldsymbol{{J}}_{\boldsymbol{\beta}} \left(\boldsymbol{{by}}\right)\boldsymbol{{J}}_{\boldsymbol{\gamma}} \left(\boldsymbol{{cz}}\right)}{\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}}…

evaluate-the-following-integral-in-closed-form-or-express-it-in-terms-of-known-special-functions-K-i-at-J-bt-1-dt-where-K-i-z-is-the-modified-Bess

Question Number 218866 by Nicholas666 last updated on 16/Apr/25 $$ \\ $$$$\:\:\:{evaluate}\:{the}\:{following}\:{integral}\:{in}\:{closed}\:{form}\:{or}\:{express} \\ $$$$\:{it}\:{in}\:{terms}\:{of}\:{known}\:{special}\:{functions};\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{ } ^{\infty} \boldsymbol{{K}}_{\boldsymbol{{i}\lambda}} \left(\boldsymbol{{at}}\right)\boldsymbol{{J}}_{\boldsymbol{\nu}} \left(\boldsymbol{{bt}}\right)^{\boldsymbol{\mu}−\mathrm{1}} \boldsymbol{{dt}} \\ $$$$\:\boldsymbol{{where}}; \\…

0-x-2-cos-x-cosh-2x-cos-x-2x-2-e-4x-2e-2x-cos-x-1-dx-lemma-k-1-cos-kx-p-k-p-cos-x-1-p-2-2p-cos-x-1-p-gt-1-

Question Number 218748 by MrGaster last updated on 15/Apr/25 $$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{cos}\:{x}}{\mathrm{cosh}\:\mathrm{2}{x}−\mathrm{cos}\:{x}}−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{e}^{\mathrm{4}{x}} −\mathrm{2}{e}^{\mathrm{2}{x}} \mathrm{cos}\:{x}+\mathrm{1}}{dx},\mathrm{lemma}:\underset{{k}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{cos}\:{kx}}{{p}^{{k}} }=\frac{\mathrm{p}\:\mathrm{cos}\:{x}−\mathrm{1}}{{p}^{\mathrm{2}} −\mathrm{2}{p}\:\mathrm{cos}\:{x}+\mathrm{1}},{p}>\mathrm{1} \\ $$ Answered by MrGaster…

Question-218779

Question Number 218779 by Spillover last updated on 15/Apr/25 Answered by breniam last updated on 15/Apr/25 $$ \\ $$$$\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cosh}\:{x}}\mathrm{d}{x}=\int\frac{\mathrm{1}}{\mathrm{1}+\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}}\mathrm{d}{x}=\int\frac{\mathrm{2}}{{e}^{{x}} +\mathrm{2}+{e}^{−{x}} }\mathrm{d}{x}= \\ $$$$\int\frac{\mathrm{2}}{\left({e}^{\frac{{x}}{\mathrm{2}}}…

Question-218674

Question Number 218674 by Spillover last updated on 14/Apr/25 Answered by Nicholas666 last updated on 14/Apr/25 $$\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{4}} }{\:\sqrt{\mathrm{8}+\mathrm{2}{x}^{\mathrm{2}} −{x}^{\mathrm{4}} \:}}\right)\sqrt{\frac{\mathrm{2}+{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}…