Menu Close

Category: Integration

Prove-that-for-all-real-numbers-a-and-b-with-a-lt-b-the-following-inequality-holds-a-b-1-dx-3-b-a-a-b-x-a-1-2-dx-a-b-1-a-x-1-3-dx-

Question Number 218626 by Nicholas666 last updated on 13/Apr/25 $$ \\ $$$$\:{Prove}\:{that}\:{for}\:{all}\:{real}\:{numbers}\:{a}\:{and}\:{b} \\ $$$${with}\:{a}<{b},\:{the}\:{following}\:{inequality}\:{holds}; \\ $$$$\left(\int_{{a}} ^{{b}} \mathrm{1}\:{dx}\right)^{\mathrm{3}} \leqslant\:\left({b}−{a}\right)\left(\int_{{a}} ^{{b}} \left({x}−{a}+\mathrm{1}\right)^{\mathrm{2}} {dx}\right)\left(\int_{{a}\:} ^{{b}} \frac{\mathrm{1}}{\left({a}−{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\right)…

0-x-s-1-n-1-1-e-nx-24-dx-

Question Number 218599 by Nicholas666 last updated on 12/Apr/25 $$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\infty} \boldsymbol{{x}}^{\boldsymbol{{s}}−\mathrm{1}} \:\underset{\boldsymbol{{n}}=\mathrm{1}\:} {\overset{\infty} {\prod}}\left(\mathrm{1}−\boldsymbol{{e}}^{−\boldsymbol{{nx}}} \right)^{−\mathrm{24}} \:\boldsymbol{{dx}} \\ $$$$ \\ $$ Commented by…

0-x-sinh-x-ln-x-e-x-1-dx-

Question Number 218598 by Nicholas666 last updated on 12/Apr/25 $$ \\ $$$$\:\:\:\underset{\mathrm{0}} {\int}^{\infty} \:\frac{\boldsymbol{{x}}}{\boldsymbol{{sinh}}\left(\boldsymbol{{x}}\right)}\boldsymbol{{ln}}\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}\right)\boldsymbol{{dx}}\: \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…

Question-218560

Question Number 218560 by MrGaster last updated on 12/Apr/25 Commented by MrGaster last updated on 12/Apr/25 $${J}_{\mathrm{0}} \left({a}\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {a}^{\mathrm{2}{n}} }{\left({n}!\right)^{\mathrm{2}} \mathrm{2}^{\mathrm{2}{n}} }\left(\mathrm{1}−{u}^{\mathrm{2}}…