Menu Close

Category: Integration

Question-218779

Question Number 218779 by Spillover last updated on 15/Apr/25 Answered by breniam last updated on 15/Apr/25 $$ \\ $$$$\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cosh}\:{x}}\mathrm{d}{x}=\int\frac{\mathrm{1}}{\mathrm{1}+\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}}\mathrm{d}{x}=\int\frac{\mathrm{2}}{{e}^{{x}} +\mathrm{2}+{e}^{−{x}} }\mathrm{d}{x}= \\ $$$$\int\frac{\mathrm{2}}{\left({e}^{\frac{{x}}{\mathrm{2}}}…

Question-218674

Question Number 218674 by Spillover last updated on 14/Apr/25 Answered by Nicholas666 last updated on 14/Apr/25 $$\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{4}} }{\:\sqrt{\mathrm{8}+\mathrm{2}{x}^{\mathrm{2}} −{x}^{\mathrm{4}} \:}}\right)\sqrt{\frac{\mathrm{2}+{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}…

Prove-that-for-all-real-numbers-a-and-b-with-a-lt-b-the-following-inequality-holds-a-b-1-dx-3-b-a-a-b-x-a-1-2-dx-a-b-1-a-x-1-3-dx-

Question Number 218626 by Nicholas666 last updated on 13/Apr/25 $$ \\ $$$$\:{Prove}\:{that}\:{for}\:{all}\:{real}\:{numbers}\:{a}\:{and}\:{b} \\ $$$${with}\:{a}<{b},\:{the}\:{following}\:{inequality}\:{holds}; \\ $$$$\left(\int_{{a}} ^{{b}} \mathrm{1}\:{dx}\right)^{\mathrm{3}} \leqslant\:\left({b}−{a}\right)\left(\int_{{a}} ^{{b}} \left({x}−{a}+\mathrm{1}\right)^{\mathrm{2}} {dx}\right)\left(\int_{{a}\:} ^{{b}} \frac{\mathrm{1}}{\left({a}−{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\right)…