Menu Close

Category: Integration

1-4-ln-x-dx-

Question Number 181840 by srikanth2684 last updated on 01/Dec/22 $$\underset{−\mathrm{1}} {\overset{\mathrm{4}} {\int}}{ln}\:{x}\:{dx} \\ $$ Commented by mr W last updated on 01/Dec/22 $${question}\:{is}\:{wrong}.\: \\ $$$${for}\:\mathrm{ln}\:\left({x}\right)\:{to}\:{be}\:{defined},\:{x}>\mathrm{0}\:!…

0-pi-2-ln-x-2-ln-2-cos-x-dx-piln-ln-2-posted-Quation-not-solved-yet-i-hop-someon-Giv-idea-for-this-one-thank-you-

Question Number 116272 by mindispower last updated on 02/Oct/20 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({x}^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({cos}\left({x}\right)\right)\right){dx}=\pi{ln}\left({ln}\left(\mathrm{2}\right)\right) \\ $$$${posted}\:{Quation}\: \\ $$$${not}\:{solved}\:{yet}\:{i}\:{hop}\:{someon}\:{Giv}\:{idea}\:{for} \\ $$$${this}\:{one}\:{thank}\:{you} \\ $$ Answered by mathdave…

1-explicite-U-n-0-e-n-x-cos-3-x-dx-2-calculate-lim-n-U-n-3-find-nsture-of-U-n-

Question Number 116250 by mathmax by abdo last updated on 02/Oct/20 $$\left.\mathrm{1}\right)\mathrm{explicite}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{n}\left[\mathrm{x}\right]} \mathrm{cos}\left(\mathrm{3}\left[\mathrm{x}\right]\right)\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} \\ $$$$\left.\mathrm{3}\right)\mathrm{find}\:\mathrm{nsture}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$ Terms of…

find-the-value-of-I-0-ch-cos-2x-x-2-9-dx-and-J-0-cos-ch-2x-x-2-9-dx-

Question Number 116247 by mathmax by abdo last updated on 02/Oct/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ch}\left(\mathrm{cos}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{9}}\mathrm{dx}\:\mathrm{and} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{ch}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{9}}\mathrm{dx} \\ $$ Terms of Service…