Menu Close

Category: Integration

0-pi-2-tan-1-cos-x-dx-I-d-need-the-exact-value-if-possible-I-ve-got-no-idea-if-and-how-this-can-be-solved-

Question Number 181643 by Frix last updated on 28/Nov/22 $$\Omega=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{tan}^{−\mathrm{1}} \:\mathrm{cos}\:{x}\:{dx} \\ $$$$\left(\mathrm{I}'\mathrm{d}\:\mathrm{need}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{if}\:\mathrm{possible}.\:\mathrm{I}'\mathrm{ve}\right. \\ $$$$\left.\mathrm{got}\:\mathrm{no}\:\mathrm{idea}\:\mathrm{if}\:\mathrm{and}\:\mathrm{how}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}.\right) \\ $$ Commented by MJS_new last updated on…

find-0-lnx-x-2-i-dx-i-1-

Question Number 116096 by mathmax by abdo last updated on 30/Sep/20 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{i}}\mathrm{dx}\:\:\:\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$ Answered by mindispower last updated on 01/Oct/20 $${let}\:{f}\left({z}\right)=\frac{{ln}\left({z}\right)}{{z}^{\mathrm{2}}…

1-calculate-f-x-0-2pi-d-x-2-2x-cos-1-0-lt-lt-pi-2-2-explicite-0-2pi-cos-x-2-2xcos-1-2-d-

Question Number 116098 by mathmax by abdo last updated on 30/Sep/20 $$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{d}\theta}{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}\:\mathrm{cos}\theta\:+\mathrm{1}}\:\:\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\mathrm{explicite}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{cos}\theta}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{d}\theta \\ $$ Terms of…

1-1-dx-6-x-x-2-

Question Number 116016 by bemath last updated on 30/Sep/20 $$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\:\sqrt{\mathrm{6}+{x}−{x}^{\mathrm{2}} }}\:? \\ $$ Answered by bobhans last updated on 30/Sep/20 $${I}=\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\:\sqrt{\mathrm{6}−\left({x}^{\mathrm{2}}…

nice-calculus-prove-i-0-ln-x-1-x-2-2-0-ii-0-dx-1-x-1-2-1-2-1-2-iii-0-pi-2-ln-x-2-ln-2-

Question Number 116014 by mnjuly1970 last updated on 30/Sep/20 $$\:\:\:\:\:\:\:…{nice}\:\:{calculus}\:…\:\:\: \\ $$$$\:{prove}\:: \\ $$$$\:\:\:{i}:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\sqrt{\mathrm{2}}} \right)^{\sqrt{\mathrm{2}}} }\:=\mathrm{0}\:\:\:\:\:\:\checkmark \\ $$$$\:\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{1}+\sqrt{\mathrm{2}}} \right)^{\mathrm{1}+\sqrt{\mathrm{2}}} }\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\checkmark\:\: \\…