Menu Close

Category: Integration

Prove-0-1-K-2-36K-2-6K-K-2-36K-2-dk-k-1-k-2-2-3-pi-2-4-2-2-3-

Question Number 217683 by MrGaster last updated on 18/Mar/25 $$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\sqrt{{K}^{\mathrm{2}} +\mathrm{36}{K}'^{\mathrm{2}} }+\mathrm{6}{K}^{'} }{{K}^{\mathrm{2}} +\mathrm{36}{K}^{'\mathrm{2}} }\:}\frac{{dk}}{\:\sqrt{{k}}\left(\mathrm{1}−{k}^{\mathrm{2}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }=\sqrt{\pi}\left(\sqrt{\mathrm{2}}−\sqrt{\frac{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}}\right) \\ $$ Answered by MrGaster last…

Question-217431

Question Number 217431 by peter frank last updated on 13/Mar/25 Answered by Frix last updated on 13/Mar/25 $$\mathrm{Simply}\:\mathrm{by}\:\mathrm{parts}: \\ $$$${u}'=\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\rightarrow\:{u}=−\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$${v}={x}\mathrm{e}^{{x}} \:\rightarrow\:{v}'=\left({x}+\mathrm{1}\right)\mathrm{e}^{{x}} \\…

l-sin-7xdx-

Question Number 217408 by Intesar last updated on 13/Mar/25 $${l}\int\mathrm{sin}\:\mathrm{7}{xdx} \\ $$ Answered by SdC355 last updated on 13/Mar/25 $$−\frac{\mathrm{1}}{\mathrm{7}}\mathrm{cos}\left(\mathrm{7}{x}\right)+{C} \\ $$$$\mathrm{because}. \\ $$$$\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\:\mathrm{cos}\left({t}\right)=−\mathrm{sin}\left({t}\right) \\…

Question-217356

Question Number 217356 by SciMaths last updated on 11/Mar/25 Answered by profcedricjunior last updated on 11/Mar/25 $$\boldsymbol{{i}}=\int_{\mathrm{1}} ^{\mathrm{2}} \int_{\boldsymbol{{y}}} ^{\boldsymbol{{y}}^{\mathrm{2}} } \int_{\mathrm{0}} ^{\boldsymbol{{ln}}\left(\boldsymbol{{y}}+\boldsymbol{{z}}\right)} \boldsymbol{{e}}^{\boldsymbol{{x}}} \boldsymbol{{dxdydz}}…

0-1-sin-1-1-1-x-x-2-dx-

Question Number 217289 by Frix last updated on 08/Mar/25 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}−{x}^{\mathrm{2}} }}\:{dx}=? \\ $$ Commented by Ghisom last updated on 11/Mar/25 $$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{partial}\:\mathrm{integration} \\…