Question Number 214498 by universe last updated on 10/Dec/24 Answered by mr W last updated on 10/Dec/24 $$=\mathrm{4}\pi\int_{\mathrm{0}} ^{\infty} {re}^{−{r}^{\mathrm{2}} } {r}^{\mathrm{2}} {dr} \\ $$$$=\mathrm{2}\pi\int_{\mathrm{0}}…
Question Number 214360 by shunmisaki007 last updated on 06/Dec/24 $$\mathrm{Find}\:\underset{−\infty} {\overset{\infty} {\int}}{e}^{−{ax}^{\mathrm{2}} } {dx}\:\mathrm{when}\:{a}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{without}\:\mathrm{changing}\:\mathrm{the}\:\mathrm{coordinate}. \\ $$ Answered by mathmax last updated on 06/Dec/24 $$=\mathrm{2}\int_{\mathrm{0}} ^{\infty}…
Question Number 214301 by efronzo1 last updated on 04/Dec/24 $$\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:\mathrm{x}\right)+\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=? \\ $$ Commented by Frix last updated on 04/Dec/24 $$\mathrm{Should}\:\mathrm{be}\:\frac{\pi}{\mathrm{2}} \\…
Question Number 213944 by Spillover last updated on 22/Nov/24 Answered by Spillover last updated on 23/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213962 by depressiveshrek last updated on 22/Nov/24 $$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\right)}{dx} \\ $$ Answered by Frix last updated on 23/Nov/24 $$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}}…
Question Number 213945 by Spillover last updated on 22/Nov/24 Answered by mathmax last updated on 23/Nov/24 $${I}=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{x}\right]\left(\mathrm{1}+{x}−\left[{x}\right]\right)} {dx} \\ $$$$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \int_{{n}} ^{{n}+\mathrm{1}}…
Question Number 213934 by ajfour last updated on 22/Nov/24 $$\int_{−\pi/\mathrm{2}} ^{\:\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\:{R}} \frac{\left({d}\theta\right)\left({dr}\right)\left({a}+{r}\mathrm{cos}\:\theta\right)}{\left({r}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ar}\mathrm{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:={f}\left({a},{R}\right) \\ $$$${Find}\:{f}\left({a},\:{R}\right). \\ $$ Commented by ajfour last…
Question Number 213844 by universe last updated on 18/Nov/24 $$\:\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \int_{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} ^{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:{dzdydx} \\…
Question Number 213776 by mnjuly1970 last updated on 16/Nov/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{F}{ind}\:\:{the}\:\:{value}\:{of}\:\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:{expression}. \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\Omega=\:\:\:\frac{\:\mathrm{I}{m}\left(\:\mathrm{Li}_{\mathrm{2}} \:\left(\mathrm{2}\right)\right)}{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{sin}\left({x}\:\right)\right)\:{dx}}\:\:=\:? \\ $$ Answered by…
Question Number 213759 by Spillover last updated on 15/Nov/24 Answered by MrGaster last updated on 06/Feb/25 $$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\frac{{e}^{{nx}} −\mathrm{1}}{{e}^{{x}} −\mathrm{1}}}{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{x}} −\mathrm{1}}{{e}^{{nx}} −\mathrm{1}}{dx}…