Menu Close

Category: Integration

Find-e-ax-2-dx-when-a-is-constant-without-changing-the-coordinate-

Question Number 214360 by shunmisaki007 last updated on 06/Dec/24 $$\mathrm{Find}\:\underset{−\infty} {\overset{\infty} {\int}}{e}^{−{ax}^{\mathrm{2}} } {dx}\:\mathrm{when}\:{a}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{without}\:\mathrm{changing}\:\mathrm{the}\:\mathrm{coordinate}. \\ $$ Answered by mathmax last updated on 06/Dec/24 $$=\mathrm{2}\int_{\mathrm{0}} ^{\infty}…

0-pi-2-sin-2-sin-x-cos-2-cos-x-dx-

Question Number 214301 by efronzo1 last updated on 04/Dec/24 $$\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:\mathrm{x}\right)+\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=? \\ $$ Commented by Frix last updated on 04/Dec/24 $$\mathrm{Should}\:\mathrm{be}\:\frac{\pi}{\mathrm{2}} \\…

x-4-1-x-x-4-5-x-5-5x-1-dx-

Question Number 213962 by depressiveshrek last updated on 22/Nov/24 $$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\right)}{dx} \\ $$ Answered by Frix last updated on 23/Nov/24 $$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}}…

pi-2-pi-2-0-R-d-dr-a-rcos-r-2-a-2-2arcos-3-2-f-a-R-Find-f-a-R-

Question Number 213934 by ajfour last updated on 22/Nov/24 $$\int_{−\pi/\mathrm{2}} ^{\:\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\:{R}} \frac{\left({d}\theta\right)\left({dr}\right)\left({a}+{r}\mathrm{cos}\:\theta\right)}{\left({r}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ar}\mathrm{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:={f}\left({a},{R}\right) \\ $$$${Find}\:{f}\left({a},\:{R}\right). \\ $$ Commented by ajfour last…

Find-the-value-of-the-following-expression-Im-Li-2-2-0-pi-2-ln-sin-x-dx-

Question Number 213776 by mnjuly1970 last updated on 16/Nov/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{F}{ind}\:\:{the}\:\:{value}\:{of}\:\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:{expression}. \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\Omega=\:\:\:\frac{\:\mathrm{I}{m}\left(\:\mathrm{Li}_{\mathrm{2}} \:\left(\mathrm{2}\right)\right)}{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{sin}\left({x}\:\right)\right)\:{dx}}\:\:=\:? \\ $$ Answered by…