Question Number 170855 by mnjuly1970 last updated on 01/Jun/22 $$ \\ $$$$\:\:\:\lfloor{x}\rfloor=\:{log}_{\mathrm{2}} \left(\mathrm{4}^{\:{x}} −\mathrm{2}^{\:{x}} −\mathrm{1}\right)\Rightarrow\:\lfloor\:\mathrm{4}^{\:{x}} \rfloor=? \\ $$$$ \\ $$ Answered by floor(10²Eta[1]) last updated…
Question Number 170831 by venom1 last updated on 01/Jun/22 Answered by LEKOUMA last updated on 01/Jun/22 $$\left.\mathrm{1}\right)\:\int\mathrm{4sin}\:\mathrm{8}{xdx}=\mathrm{4}\int\mathrm{sin}\:\mathrm{8}{xdx}=\mathrm{4}×−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\:\mathrm{8}{x}+{c}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{8}{x}+{c} \\ $$$$\left.\mathrm{2}\right)\:\int{x}\mathrm{cos}\:\left(\mathrm{12}{x}^{\mathrm{2}} \right){dx} \\ $$$${let}\:{u}=\mathrm{12}{x}^{\mathrm{2}} \:\Rightarrow\:{du}=\mathrm{24}{xdx}\:\Rightarrow\:{dx}=\frac{{du}}{\mathrm{24}{x}} \\ $$$$\int\frac{\mathrm{1}}{\mathrm{24}}\mathrm{cos}\left(\:{u}\right){du}=\frac{\mathrm{1}}{\mathrm{24}}\int\mathrm{cos}\:\left({u}\right){du}=\frac{\mathrm{1}}{\mathrm{24}}\mathrm{sin}\left(\:{u}\right)+{c}…
Question Number 170802 by Sotoberry last updated on 31/May/22 Answered by thfchristopher last updated on 31/May/22 $$\int\mathrm{ln}\:\left({x}+{x}^{\mathrm{2}} \right){dx} \\ $$$$=\int\mathrm{ln}\:{x}\left({x}+\mathrm{1}\right){dx} \\ $$$$=\int\mathrm{ln}\:{xdx}+\int\mathrm{ln}\:\left({x}+\mathrm{1}\right){dx} \\ $$$$={x}\mathrm{ln}\:{x}−\int{xd}\left(\mathrm{ln}\:{x}\right)+{x}\mathrm{ln}\:\left({x}+\mathrm{1}\right)−\int{xd}\left[\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right] \\…
Question Number 39712 by math khazana by abdo last updated on 10/Jul/18 $${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left({x}^{{n}} \right)\:+{sin}\left({x}^{{n}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{9}\right)^{{n}} }\:{dx} \\ $$ Commented by math khazana…
Question Number 39711 by math khazana by abdo last updated on 10/Jul/18 $${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{{n}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:{dx}\:{with}\:{n}\:{natral}\:{integr} \\ $$ Commented by maxmathsup by imad…
Question Number 39706 by behi83417@gmail.com last updated on 10/Jul/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 105239 by bemath last updated on 27/Jul/20 $$\underset{\underset{{p}=\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\frac{\mathrm{12}{ky}}{{x}^{\mathrm{2}} }\:+\:\mathrm{6}{x}\right)\:{dx}\:=\:\underset{\underset{{p}=\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}}…
Question Number 105233 by mathmax by abdo last updated on 27/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ch}\left(\mathrm{cosx}\right)−\mathrm{cos}\left(\mathrm{chx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}}\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 105232 by mathmax by abdo last updated on 27/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{2x}^{\mathrm{2}} \right)}{\left(\mathrm{4x}^{\mathrm{2}} \:+\mathrm{9}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$ Answered by mathmax by abdo last…
Question Number 105230 by mathmax by abdo last updated on 27/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} } \\ $$ Answered by 1549442205PVT last updated…