Menu Close

Category: Integration

find-x-1-x-1-x-1-x-1-dx-

Question Number 38720 by maxmathsup by imad last updated on 28/Jun/18 $${find}\:\:\:\int\:\:\:\:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{dx} \\ $$ Commented by math khazana by abdo last updated on 28/Jun/18 $${the}\:{Q}\:{is}\:{find}\:\:\int\:\:\:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}\:+\sqrt{{x}−\mathrm{1}}}{dx}…

let-f-x-0-pi-2-d-1-x-e-i-with-x-lt-1-1-developp-f-x-at-integr-serie-2-calculate-f-x-3-find-the-value-of-0-pi-2-e-i-1-x-e-i-2-4-calculate-0-pi-2

Question Number 38706 by abdo mathsup 649 cc last updated on 28/Jun/18 $${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{d}\theta}{\mathrm{1}+{x}\:{e}^{{i}\theta} }\:\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{e}^{{i}\theta} }{\left(\mathrm{1}+{x}\:{e}^{{i}\theta}…

If-0-1-e-x-2-dx-a-then-find-the-value-of-0-1-x-2-e-x-2-dx-in-terms-of-a-

Question Number 38651 by rahul 19 last updated on 28/Jun/18 $$\mathrm{If}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:{a}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {dx}\:{in}\:{terms}\:{of}\:'{a}'\:? \\ $$ Answered…

using-cylindrical-coordinates-x-rcos-y-rsin-z-z-to-evaluate-the-integral-K-S-x-2-y-2-z-2-dxdydz-where-S-x-y-z-R-3-x-2-y-2-4-0-z-x-2-y-2-

Question Number 169706 by MikeH last updated on 06/May/22 $$\mathrm{using}\:\mathrm{cylindrical}\:\mathrm{coordinates}\:\begin{cases}{{x}={r}\mathrm{cos}\theta}\\{{y}\:=\:{r}\mathrm{sin}\:\theta}\\{{z}={z}}\end{cases} \\ $$$$\mathrm{to}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{integral} \\ $$$${K}=\:\int\int\int_{{S}} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{z}^{\mathrm{2}} }\:{dxdydz} \\ $$$$\mathrm{where} \\ $$$$\:{S}=\:\left\{\left({x},{y},{z}\right)\:\in\mathbb{R}^{\mathrm{3}} :\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\leqslant\:\mathrm{4},\:\mathrm{0}\:\leqslant{z}\leqslant\sqrt{{x}^{\mathrm{2}}…