Question Number 212007 by Nadirhashim last updated on 26/Sep/24 $$\:\:\:\:\int\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:\sqrt[{\mathrm{3}}]{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}} \\ $$ Answered by Ghisom last updated on 26/Sep/24 $$=\int\left(\mathrm{cos}\:{x}\right)^{−\mathrm{1}/\mathrm{3}} \left(\mathrm{sin}\:{x}\right)^{\mathrm{4}/\mathrm{3}} {dx}= \\ $$$$=\frac{\mathrm{3}}{\mathrm{7}}\:_{\mathrm{2}} {F}_{\mathrm{1}}…
Question Number 212001 by mnjuly1970 last updated on 26/Sep/24 $$ \\ $$$$\:\:\:\:{prove}\:\:{that}: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\underset{{k}\in\mathbb{Z}} {\sum}\:\frac{\:\left(−\mathrm{1}\right)^{{k}} }{\:{x}\:+\:{k}\pi}\:=\:\frac{\mathrm{1}}{{sin}\left({x}\right)}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$ Answered…
Question Number 211857 by Frix last updated on 22/Sep/24 $$\underset{\mathrm{1}} {\overset{\infty} {\int}}\left(\frac{\mathrm{tan}^{−\mathrm{1}} \:{x}}{{x}}×\frac{\mathrm{ln}\:{x}}{{x}}\right){dx}=? \\ $$ Answered by Berbere last updated on 23/Sep/24 $$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{tan}^{−\mathrm{1}}…
Question Number 211778 by Mr.D.N. last updated on 20/Sep/24 $$\:\:\mathrm{Show}\:\mathrm{that}: \\ $$$$\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \:\boldsymbol{\mathrm{sin}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}\:\mathrm{2}\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}\:=\:\frac{\mathrm{3}\pi\:−\mathrm{4}}{\mathrm{192}} \\ $$ Commented by BHOOPENDRA last updated on 20/Sep/24 $${this}\:{result}\:{can}\:{to}\:{possible}…
Question Number 211749 by universe last updated on 19/Sep/24 $${volume}\:{bounded}\:{by}\:{the}\:{curve} \\ $$$$\:{z}\:=\:\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }\:\:\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\:\mathrm{6}^{\mathrm{2}} \\ $$ Answered by mr W last updated…
Question Number 211708 by Skyneless last updated on 17/Sep/24 Answered by Frix last updated on 18/Sep/24 $$\int\sqrt{\mathrm{tan}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2tan}^{−\mathrm{1}} \:\sqrt{\mathrm{tan}\:{x}}\right] \\ $$$$=\int\frac{\mathrm{1}−\mathrm{cos}\:{t}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:{t}}{dt} \\ $$$$…
Question Number 211696 by mnjuly1970 last updated on 16/Sep/24 $$ \\ $$$$\:\:\:\:\:\underset{\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\:\:\mathrm{1}}{\left(\:\mathrm{2}\:+\mathrm{2}{x}\:+\:{x}^{\mathrm{2}} \:\right)^{\mathrm{3}} }\:{dx}=\:? \\ $$$$\:\:\:\:\:\:\underbrace{\underset{\:\:\:\:\overset{\mathrm{Improper}\:\mathrm{integral}\:} {\:}\:\:\:\:\:} {\:}} \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$ Answered…
Question Number 211528 by mnjuly1970 last updated on 12/Sep/24 $$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{−\mathrm{1}} \:\left({x}^{\mathrm{2}} \:\right)}{{x}^{\:\mathrm{2}} }\:{dx}=\:?\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$…
Question Number 211486 by mnjuly1970 last updated on 10/Sep/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{Mathematical}\:\:\:\:\:{Analysis}… \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:{f}:\mathbb{R}\:\rightarrow\:\mathbb{R}\:{is}\:{diffrentiable}\:{function}, \\ $$$$\:\:\:\:\:{f}\:\:{and}\:\:{f}\:'\:,\:{has}\:{no}\:{common}\:{zero} \\ $$$$\:\:\:\:\:{on}\:\:\mathbb{R}\:. \\ $$$$\:\:\:\:\:\:{prove}\:{that}\:{the}\:{following}\:{set}\:{is}\:{finite}. \\ $$$$ \\…
Question Number 211421 by universe last updated on 08/Sep/24 $$\:\:\:\:\mathrm{if}\:\mathrm{a}_{\mathrm{n}} \:=\:\mathrm{n}^{\mathrm{4}} \int_{\mathrm{n}} ^{\mathrm{n}+\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{5}} }\:\:\mathrm{then} \\ $$$$\:\:\:\:\left(\mathrm{1}\right)\:\Sigma\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{divergent}?? \\ $$$$\:\:\:\:\left(\mathrm{2}\right)\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\mathrm{n}\:} \:=\:?? \\ $$ Answered…