Menu Close

Category: Integration

sin-x-tan-x-1-3-dx-

Question Number 212007 by Nadirhashim last updated on 26/Sep/24 $$\:\:\:\:\int\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:\sqrt[{\mathrm{3}}]{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}} \\ $$ Answered by Ghisom last updated on 26/Sep/24 $$=\int\left(\mathrm{cos}\:{x}\right)^{−\mathrm{1}/\mathrm{3}} \left(\mathrm{sin}\:{x}\right)^{\mathrm{4}/\mathrm{3}} {dx}= \\ $$$$=\frac{\mathrm{3}}{\mathrm{7}}\:_{\mathrm{2}} {F}_{\mathrm{1}}…

Show-that-0-4-sin-4-x-2x-dx-3pi-4-192-

Question Number 211778 by Mr.D.N. last updated on 20/Sep/24 $$\:\:\mathrm{Show}\:\mathrm{that}: \\ $$$$\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \:\boldsymbol{\mathrm{sin}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}\:\mathrm{2}\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}\:=\:\frac{\mathrm{3}\pi\:−\mathrm{4}}{\mathrm{192}} \\ $$ Commented by BHOOPENDRA last updated on 20/Sep/24 $${this}\:{result}\:{can}\:{to}\:{possible}…

Question-211708

Question Number 211708 by Skyneless last updated on 17/Sep/24 Answered by Frix last updated on 18/Sep/24 $$\int\sqrt{\mathrm{tan}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2tan}^{−\mathrm{1}} \:\sqrt{\mathrm{tan}\:{x}}\right] \\ $$$$=\int\frac{\mathrm{1}−\mathrm{cos}\:{t}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:{t}}{dt} \\ $$$$…

1-0-1-2-2x-x-2-3-dx-Improper-integral-

Question Number 211696 by mnjuly1970 last updated on 16/Sep/24 $$ \\ $$$$\:\:\:\:\:\underset{\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\:\:\mathrm{1}}{\left(\:\mathrm{2}\:+\mathrm{2}{x}\:+\:{x}^{\mathrm{2}} \:\right)^{\mathrm{3}} }\:{dx}=\:? \\ $$$$\:\:\:\:\:\:\underbrace{\underset{\:\:\:\:\overset{\mathrm{Improper}\:\mathrm{integral}\:} {\:}\:\:\:\:\:} {\:}} \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$ Answered…

Mathematical-Analysis-f-R-R-is-diffrentiable-function-f-and-f-has-no-common-zero-on-R-prove-that-the-following-set-is-finite-X

Question Number 211486 by mnjuly1970 last updated on 10/Sep/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{Mathematical}\:\:\:\:\:{Analysis}… \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:{f}:\mathbb{R}\:\rightarrow\:\mathbb{R}\:{is}\:{diffrentiable}\:{function}, \\ $$$$\:\:\:\:\:{f}\:\:{and}\:\:{f}\:'\:,\:{has}\:{no}\:{common}\:{zero} \\ $$$$\:\:\:\:\:{on}\:\:\mathbb{R}\:. \\ $$$$\:\:\:\:\:\:{prove}\:{that}\:{the}\:{following}\:{set}\:{is}\:{finite}. \\ $$$$ \\…