Menu Close

Category: Integration

let-P-n-x-1-x-2-1-x-4-1-x-2-n-calculate-lim-n-0-x-P-n-t-dt-with-0-lt-x-lt-1-

Question Number 33744 by prof Abdo imad last updated on 23/Apr/18 $${let}\:\:{P}_{{n}} \left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)….\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$${calculate}\:\:{lim}_{{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{{x}} \:{P}_{{n}} \left({t}\right){dt}\:\:{with}\:\:\mathrm{0}<{x}<\mathrm{1}\:. \\ $$…

1-x-1-3-x-x-1-4-2-x-x-2-2x-2-2-

Question Number 164809 by mathlove last updated on 22/Jan/22 $$\left.\mathrm{1}\right)\:\:\:\:\int\frac{\sqrt[{\mathrm{3}}]{{x}}}{\:\sqrt{{x}}+\sqrt[{\mathrm{4}}]{{x}}}=? \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\int\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }=? \\ $$ Answered by Ar Brandon last updated on 22/Jan/22 $$\mathrm{Ostrogradsky}…

Given-F-x-1-2-x-1-x-1-f-t-dt-Show-that-F-is-defined-continuous-and-derivable-And-find-its-derivative-

Question Number 99261 by Ar Brandon last updated on 19/Jun/20 $$\mathrm{Given}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}\mathrm{f}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{F}\:\mathrm{is}\:\mathrm{defined},\:\mathrm{continuous},\:\mathrm{and}\:\mathrm{derivable}. \\ $$$$\mathrm{And}\:\mathrm{find}\:\mathrm{its}\:\mathrm{derivative} \\ $$ Answered by abdomathmax last updated on 19/Jun/20 $$\mathrm{F}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}\:\int^{\mathrm{x}}…