Menu Close

Category: Integration

1-study-the-convergence-of-0-1-x-p-1-x-dx-2-find-lim-p-0-1-x-p-1-x-dx-

Question Number 32939 by abdo imad last updated on 06/Apr/18 $$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{p}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}{dx}\:. \\ $$ Commented by abdo…

Question-98463

Question Number 98463 by pranesh last updated on 14/Jun/20 Answered by maths mind last updated on 15/Jun/20 $$\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\frac{{x}^{{k}} }{{k}}=\int\frac{\mathrm{1}−{x}^{\mathrm{99}} }{\mathrm{1}−{x}}{dx} \\ $$$$\left({cot}\left({x}\right)+……+\frac{{cot}^{\mathrm{99}} \left({x}\right)}{\mathrm{99}}\right)+\int\left(\mathrm{1}+{cot}\left({x}\right)\right)\left(\mathrm{1}+{cot}^{\mathrm{99}}…

let-f-x-x-2-2pi-periodi-even-developp-f-at-fourier-serie-

Question Number 98428 by mathmax by abdo last updated on 13/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \:\:,\mathrm{2}\pi\:\mathrm{periodi}\:\mathrm{even}\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by mathmax by abdo last updated on 14/Jun/20 $$\mathrm{f}\:\mathrm{is}\:\mathrm{even}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{a}_{\mathrm{0}}…

let-f-x-pi-4-pi-3-dt-x-tant-calculate-f-x-2-explicit-g-x-pi-4-pi-3-dt-x-tant-2-3-find-the-value-of-integrals-pi-4-pi-3-dt-2-tant-and-pi-4-pi-3-dt-2-tan

Question Number 98426 by mathmax by abdo last updated on 13/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{dt}}{\mathrm{x}+\mathrm{tant}}\:\:\mathrm{calculate}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{explicit}\:\mathrm{g}\left(\mathrm{x}\right)\:=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{dt}}{\left(\mathrm{x}+\mathrm{tant}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{integrals}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{dt}}{\mathrm{2}+\mathrm{tant}}\:\mathrm{and}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{dt}}{\left(\mathrm{2}+\mathrm{tant}\right)^{\mathrm{2}}…

Question-163954

Question Number 163954 by mnjuly1970 last updated on 12/Jan/22 Answered by mathmax by abdo last updated on 13/Jan/22 $$\Psi=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{x}} }{\mathrm{sh}\left(\mathrm{2x}\right)}\mathrm{dx}\:=_{\mathrm{2x}=\mathrm{t}} \:\:\mathrm{2}\int_{\mathrm{0}} ^{\infty}…