Menu Close

Category: Integration

tan-x-1-tan-4-x-dx-

Question Number 98382 by bobhans last updated on 13/Jun/20 $$\int\:\mathrm{tan}\:\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{4}} \:\mathrm{x}}\:\mathrm{dx}\: \\ $$ Commented by john santu last updated on 13/Jun/20 $$\mathrm{set}\:\mathrm{tan}\:\mathrm{x}\:=\:\sqrt{\mathrm{z}}\:\Rightarrow\mathrm{x}\:=\:\mathrm{arc}\:\mathrm{tan}\:\left(\sqrt{\mathrm{z}}\right) \\ $$$$\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{z}}}\:×\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }\:\mathrm{dz}\:…

cos-x-18-dx-

Question Number 98338 by  M±th+et+s last updated on 13/Jun/20 $$\int{cos}\left({x}^{\mathrm{18}} \right)\:{dx} \\ $$$$ \\ $$ Answered by smridha last updated on 13/Jun/20 $$\boldsymbol{{let}}\:\boldsymbol{{x}}=\boldsymbol{{k}}^{\frac{\mathrm{1}}{\mathrm{18}}} \boldsymbol{{so}} \\…

solution-with-residu-theorem-0-x-2-x-4-2x-2-2-dx-

Question Number 163854 by amin96 last updated on 11/Jan/22 $$\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{residu}}\:\boldsymbol{\mathrm{theorem}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}}\boldsymbol{\mathrm{dx}}=?\:\:\:\: \\ $$ Answered by Ar Brandon last updated…

3x-2-2x-4-7x-2-9x-2-dx-

Question Number 32785 by NECx last updated on 02/Apr/18 $$\int\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{4}}{\mathrm{7}{x}^{\mathrm{2}} −\mathrm{9}{x}+\mathrm{2}}{dx} \\ $$ Answered by Joel578 last updated on 02/Apr/18 $$\frac{\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:−\:\mathrm{4}}{\left(\mathrm{7}{x}\:−\:\mathrm{2}\right)\left({x}\:−\mathrm{1}\right)}\:=\:\frac{{A}}{\mathrm{7}{x}\:−\:\mathrm{2}}\:+\:\frac{{B}}{{x}\:−\:\mathrm{1}}\:+\:{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{7}{Cx}^{\mathrm{2}}…

0-t-e-4t-1-ln-i-t-e-2t-dt-by-M-A-

Question Number 163834 by amin96 last updated on 11/Jan/22 $$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{t}}\left(\boldsymbol{{e}}^{\mathrm{4}\boldsymbol{{t}}} −\mathrm{1}\right)\left(\boldsymbol{{ln}}\left(\boldsymbol{{i}}\right)+\boldsymbol{{t}}\right)}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{t}}} }\boldsymbol{{dt}}=? \\ $$$$\boldsymbol{{by}}\:\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com