Menu Close

Category: Integration

Question-32763

Question Number 32763 by San Sophanethsan069 last updated on 01/Apr/18 Commented by abdo imad last updated on 01/Apr/18 $${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\:\mid{sinx}\mid\:+\mid{cosx}\mid\right){dx}\:\:.{ch}\:.{x}=\pi\:+{t}\:{give} \\ $$$${I}\:=\:\int_{−\pi} ^{\pi} \:\left(\mid{sint}\mid\:+\mid{cost}\mid\right){dt}\:=\mathrm{2}\:\int_{\mathrm{0}}…

e-x-x-

Question Number 163828 by milandou last updated on 11/Jan/22 $$\int\frac{{e}^{{x}} }{{x}} \\ $$ Answered by Ar Brandon last updated on 11/Jan/22 $$=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}−\mathrm{1}} }{{n}!}{dx}=\int\left(\frac{\mathrm{1}}{{x}}+\underset{{n}=\mathrm{1}}…

GivenU-n-0-1-x-n-1-x-dx-n-N-show-that-U-n-2-n-2-n-n-1-2n-3-

Question Number 98271 by Ar Brandon last updated on 12/Jun/20 $$\mathcal{G}\mathrm{ivenU}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}−\mathrm{x}}\mathrm{dx}\:\:\mathrm{n}\in\mathbb{N},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{2}^{\mathrm{n}+\mathrm{2}} \mathrm{n}!\left(\mathrm{n}+\mathrm{1}\right)}{\left(\mathrm{2n}+\mathrm{3}\right)!} \\ $$ Commented by Ar Brandon…