Question Number 31094 by abdo imad last updated on 02/Mar/18 $${m}\:{and}\:{n}\:{integrs}\:{and}\:{y}\geqslant\mathrm{0}\:{find}\:\int_{\mathrm{0}} ^{{y}} \:{x}^{{m}} \left({y}−{x}\right)^{{n}} {dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31095 by abdo imad last updated on 02/Mar/18 $${find}\:{I}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−{xt}} {dt}\:\:\:\:{x}>\mathrm{0}\:{n}\in\:{N}. \\ $$ Commented by abdo imad last updated on…
Question Number 31092 by abdo imad last updated on 02/Mar/18 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\:. \\ $$ Commented by abdo imad last updated on 07/Mar/18…
Question Number 31093 by abdo imad last updated on 02/Mar/18 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {cos}\left(\mathrm{2}{xy}\right){dx}. \\ $$ Commented by abdo imad last updated on 04/Mar/18…
Question Number 31089 by abdo imad last updated on 02/Mar/18 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{dy}\:\int_{{y}^{\mathrm{2}} } ^{{y}} \:\:\frac{{ydx}}{{x}\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:. \\ $$ Terms of Service Privacy Policy…
Question Number 31090 by abdo imad last updated on 02/Mar/18 $${find}\:\int\int_{\mathrm{1}\leqslant{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{4}\:{and}\:{y}\geqslant\mathrm{0}} \:\:\:\frac{{dxdy}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:. \\ $$ Commented by abdo imad last updated on…
Question Number 31091 by abdo imad last updated on 02/Mar/18 $${let}\:\:−\mathrm{1}<{t}<\mathrm{1}\:{find}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{ln}\left(\mathrm{1}+{tcosx}\right)}{{cosx}}{dx} \\ $$ Commented by abdo imad last updated on 06/Mar/18 $${we}\:{have}\:{f}^{'} \left({t}\right)=\int_{\mathrm{0}}…
Question Number 31087 by abdo imad last updated on 02/Mar/18 $${find}\:\int\int\int_{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \:<\mathrm{4}} \:\:\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \right){dxdydz}. \\ $$ Terms of Service Privacy Policy…
Question Number 31088 by abdo imad last updated on 02/Mar/18 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{dx}\:\int_{\mathrm{0}} ^{\mathrm{1}−{x}} \:\:{e}^{\frac{{y}−{x}}{{y}+{x}}} \:{dy}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31086 by abdo imad last updated on 02/Mar/18 $${find}\:\int\int_{{D}} \left({x}^{\mathrm{4}} \:−{y}^{\mathrm{4}} \right){dxdy}\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{1}<{x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} <\mathrm{2}\:,\mathrm{1}<{xy}<\mathrm{2}\:,{x}>\mathrm{0},{y}>\mathrm{0}\right\} \\ $$ Terms of Service Privacy…