Menu Close

Category: Integration

calculate-f-a-0-cos-sh-2x-x-2-a-2-dx-and-g-a-0-cos-sh-2x-x-2-a-2-2-a-gt-0-

Question Number 96198 by mathmax by abdo last updated on 30/May/20 $$\mathrm{calculate}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{a}^{\mathrm{2}} }\mathrm{dx}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:\:\left(\mathrm{a}>\mathrm{0}\right) \\ $$ Answered by…

dx-4x-2-4x-3-

Question Number 96175 by Fikret last updated on 30/May/20 $$\int\frac{{dx}}{\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{3}}}=? \\ $$ Commented by bobhans last updated on 30/May/20 $$\int\:\frac{{dx}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{x}+\frac{\mathrm{3}}{\mathrm{4}}}}\:=\:\int\:\frac{{dx}}{\mathrm{2}\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}} \\ $$$${set}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\:=\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}\:\mathrm{tan}\:{u}\:\Rightarrow\mathrm{tan}\:\mathrm{u}\:=\:\frac{\mathrm{2x}+\mathrm{1}}{\:\sqrt{\mathrm{2}}}…

1-sin-x-cos-x-sin-2x-dx-2-0-pi-2-cos-7x-cos-17x-cos-37x-dx-

Question Number 161703 by cortano last updated on 21/Dec/21 $$\left(\mathrm{1}\right)\int\:\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}\:{dx} \\ $$$$\left(\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{cos}\:\mathrm{7}{x}\:\mathrm{cos}\:\mathrm{17}{x}\:\mathrm{cos}\:\mathrm{37}{x}\:{dx} \\ $$ Commented by cortano last updated on 21/Dec/21 $$\left(\mathrm{1}\right)\:\Omega\:=\int\:\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}−\mathrm{1}}}\:{dx} \\…

find-R-x-2y-2-dxdy-in-R-1-2-0-2-

Question Number 96128 by bemath last updated on 30/May/20 $${find}\:\int\int_{{R}} \:\left({x}+\mathrm{2}{y}\right)^{\mathrm{2}} \:{dxdy}\:{in}\:{R}=\left[−\mathrm{1},\mathrm{2}\right]\:×\left[\mathrm{0},\mathrm{2}\right]\: \\ $$ Answered by john santu last updated on 30/May/20 $$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{−\mathrm{1}}…