Question Number 202522 by mou0113 last updated on 28/Dec/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 202490 by Calculusboy last updated on 27/Dec/23 Commented by aleks041103 last updated on 27/Dec/23 $${is}\:\left\{{x}\right\}\:{the}\:{whole}\:{part}\:{or}\:{the}\:{fractional}\:{part}? \\ $$ Commented by Calculusboy last updated on…
Question Number 202485 by Calculusboy last updated on 27/Dec/23 Commented by MathematicalUser2357 last updated on 28/Dec/23 $$\mathrm{Can}'\mathrm{t}\:\mathrm{integrate}\:\mathrm{in}\:\mathrm{range}\:\left[−\infty,\:\infty\right] \\ $$ Commented by TheHoneyCat last updated on…
Question Number 202448 by Calculusboy last updated on 26/Dec/23 Answered by professorleiciano last updated on 27/Dec/23 $${Nao}\:{tem}\:{antiderivada}\:{elementar}. \\ $$ Answered by MathematicalUser2357 last updated on…
Question Number 202418 by MathematicalUser2357 last updated on 26/Dec/23 $$\mathrm{Hard}\:\mathrm{integral} \\ $$$$\int\int\int\int\int\int\int\int\int\begin{vmatrix}{{a}}&{{b}}&{{c}}\\{{f}}&{{g}}&{{h}}\\{{j}}&{{k}}&{{l}}\end{vmatrix}{dl}\:{dk}\:{dj}\:{dh}\:{dg}\:{df}\:{dc}\:{db}\:{da}= \\ $$ Answered by Frix last updated on 26/Dec/23 $$\mathrm{Not}\:\mathrm{hard}\:\mathrm{at}\:\mathrm{all} \\ $$$$=\frac{{abcfghjkl}}{\mathrm{8}}\left({a}\left({gl}−{hk}\right)−{b}\left({fl}−{hj}\right)+{c}\left({fk}−{gj}\right)\right) \\…
Question Number 202415 by MathematicalUser2357 last updated on 26/Dec/23 $$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\int{g}'\left({x}\right){f}'\left({g}\left({x}\right)\right){dx}\:\mathrm{is}… \\ $$ Answered by cortano12 last updated on 26/Dec/23 $$\:\mathrm{let}\:\mathrm{u}=\mathrm{g}\left(\mathrm{x}\right)\Rightarrow\mathrm{du}=\:\mathrm{g}'\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$\:\mathrm{I}=\:\int\:\mathrm{g}'\left(\mathrm{x}\right)\:\mathrm{f}\:'\left(\mathrm{g}\left(\mathrm{x}\right)\right)\:\mathrm{dx}\: \\ $$$$\:\:\:=\:\int\:\mathrm{f}\:'\left(\mathrm{u}\right)\:\mathrm{du}=\:\int\:\frac{\mathrm{df}\left(\mathrm{u}\right)}{\mathrm{du}}.\:\mathrm{du} \\…
Question Number 202406 by mou0113 last updated on 26/Dec/23 Answered by witcher3 last updated on 26/Dec/23 $$\mathrm{f}\left(\mathrm{s}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{s}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dt}\Rightarrow\mathrm{f}'\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}}…
Question Number 202388 by Calculusboy last updated on 25/Dec/23 $$\:\:\boldsymbol{{P}}\:\boldsymbol{{rove}}\:\boldsymbol{{that}}:\:\:\:\:\int\:\frac{\boldsymbol{{dx}}}{\boldsymbol{{b}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{c}}}=\frac{\boldsymbol{{tan}}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}\sqrt{\boldsymbol{{a}}}\boldsymbol{{x}}}{\:\sqrt{\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} }}\right)}{\:\sqrt{\mathrm{2}}\sqrt{\boldsymbol{{a}}}\sqrt{\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} }}+\boldsymbol{{C}} \\ $$$$\boldsymbol{{if}}\:\:\boldsymbol{{a}}\centerdot\left(\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} \right)>\mathrm{0} \\ $$$$ \\ $$ Answered by witcher3…
Question Number 202167 by tri26112004 last updated on 22/Dec/23 $$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \underset{{x}} {\int}^{\mathrm{1}} {sin}\left({y}^{\mathrm{2}} \right){dydx}\:=\:¿ \\ $$ Answered by mnjuly1970 last updated on 22/Dec/23 $$\:{answer}:=\:{sin}^{\mathrm{2}}…
Question Number 202212 by Calculusboy last updated on 22/Dec/23 Commented by BOYQOBILOV last updated on 23/Dec/23 $$ \\ $$ Answered by shunmisaki007 last updated on…