Menu Close

Category: Integration

Demostration-of-the-volume-of-an-sphere-V-4pir-3-3-x-2-y-2-z-2-r-2-We-divide-the-sphere-in-8-parts-So-the-volume-of-a-part-is-0-r-0-r-2-x-2-r-2-x-2-y-2-y-x-Lets-as

Question Number 20939 by Hitler last updated on 08/Sep/17 $$\mathrm{Demostration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{an}\:\mathrm{sphere}\:\mathrm{V}=\frac{\mathrm{4}\pi\mathrm{r}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{r}^{\mathrm{2}} \:\mathrm{We}\:\mathrm{divide}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{in}\:\mathrm{8}\:\mathrm{parts}.\:\mathrm{So}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{a}\:\mathrm{part}\:\mathrm{is} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \int_{\mathrm{0}} ^{\:\sqrt{\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }} \sqrt{\mathrm{r}^{\mathrm{2}}…

integrate-with-respect-to-x-2x-1-x-2-4x-8-dx-

Question Number 20908 by j.masanja06@gmail.com last updated on 07/Sep/17 $${integrate}\:{with}\:{respect}\:{to}\:{x}\: \\ $$$$\int\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{8}}\right){dx} \\ $$ Answered by Joel577 last updated on 07/Sep/17 $${I}\:=\:\int\:\frac{\mathrm{2}{x}\:+\:\mathrm{1}}{\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} \:+\:\mathrm{4}}\:{dx} \\…

x-x-2-1-dx-

Question Number 86431 by M±th+et£s last updated on 28/Mar/20 $$\int\sqrt{{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:}\:{dx} \\ $$ Answered by jagoll last updated on 28/Mar/20 $$\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:=\:\mathrm{x}−\mathrm{t}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{x}^{\mathrm{2}}…

dx-a-cos-x-b-sin-x-

Question Number 86428 by jagoll last updated on 28/Mar/20 $$\int\:\:\frac{\mathrm{dx}}{\mathrm{a}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{b}\:\mathrm{sin}\:\mathrm{x}}? \\ $$ Commented by jagoll last updated on 28/Mar/20 $$\mathrm{standard}\:\mathrm{solving} \\ $$$$\mathrm{a}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{b}\:\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{k}\:\mathrm{cos}\:\left(\mathrm{x}−\theta\right) \\ $$$$\int\:\frac{\mathrm{dx}}{\mathrm{k}\:\mathrm{cos}\:\left(\mathrm{x}−\theta\right)}\:=\:\frac{\mathrm{1}}{\mathrm{k}}\int\:\mathrm{sec}\:\left(\mathrm{x}−\theta\right)\:\mathrm{dx} \\…

f-x-a-x-1-x-D-f-0-a-1-h-x-f-1-a-ax-f-1-a-2x-D-h-D-Domain-

Question Number 151958 by mnjuly1970 last updated on 24/Aug/21 $${f}\:\left(\:{x}\:\right)\:=\:{a}\:−\sqrt{\frac{{x}}{\mathrm{1}+{x}}\:}\:\:\:,\:{D}_{\:{f}} \::\:\left[\:\mathrm{0},\:\infty\right) \\ $$$$,\:{a}\geqslant\:\mathrm{1}\:\:\:,\:\:{h}\:\left({x}\:\right):=\sqrt{\frac{\:{f}^{\:−\mathrm{1}} \left({a}−{ax}\:\right)}{{f}^{\:−\mathrm{1}} \left(\:{a}−\:\mathrm{2}{x}\:\right)}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{D}_{\:{h}} \:=\:?\:\:\:\left(\:\:\:{D}\::=\:{Domain}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$ Terms of Service…