Question Number 200901 by Rupesh123 last updated on 26/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 200844 by darklord last updated on 24/Nov/23 Commented by som(math1967) last updated on 24/Nov/23 $$?? \\ $$ Commented by darklord last updated on…
Question Number 200801 by mnjuly1970 last updated on 23/Nov/23 Answered by witcher3 last updated on 24/Nov/23 $$\mathrm{introduce}\:\mathrm{erfc}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt} \\ $$$$\phi=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}}…
Question Number 200802 by mnjuly1970 last updated on 23/Nov/23 Answered by witcher3 last updated on 23/Nov/23 $$\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt},\mathrm{x}^{\mathrm{2}}…
Question Number 200697 by Bayat last updated on 22/Nov/23 Answered by aleks041103 last updated on 22/Nov/23 $${sin}\left(\mathrm{2}{t}\right)=\mathrm{2}{sin}\left({t}\right){cos}\left({t}\right) \\ $$$$\Rightarrow\int\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{2}{sin}\left({t}\right)}{dt}=\int{cos}\left({t}\right){dt}={sin}\left({t}\right)+{C} \\ $$ Terms of Service Privacy…
Question Number 200748 by Rupesh123 last updated on 22/Nov/23 Answered by MM42 last updated on 22/Nov/23 $$\left.{s}=\mathrm{4}\int_{\mathrm{0}} ^{{c}} \left({c}^{\mathrm{2}} −{x}^{\mathrm{2}} \right){dx}=\mathrm{4}\left({c}^{\mathrm{2}} {x}−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} \right)\right]_{\mathrm{0}} ^{{c}} \\…
Question Number 200747 by Rupesh123 last updated on 22/Nov/23 Answered by MM42 last updated on 22/Nov/23 $$\left.{lnx}={u}\Rightarrow\int_{\mathrm{1}} ^{\infty} \:\frac{{du}}{{u}^{\mathrm{2}} }\:=−\frac{\mathrm{1}}{{u}}\right]_{\mathrm{1}} ^{\infty} =\mathrm{1}\:\checkmark \\ $$ Commented…
Question Number 200736 by Calculusboy last updated on 22/Nov/23 $$\boldsymbol{{Solve}}:\:\boldsymbol{{A}}\:\boldsymbol{{particle}}\:\boldsymbol{{moves}}\:\boldsymbol{{along}}\:\boldsymbol{{the}}\:\boldsymbol{{space}} \\ $$$$\boldsymbol{{curve}}\:\underset{−} {\boldsymbol{{r}}}=\left(\boldsymbol{{t}}^{\mathrm{2}} +\boldsymbol{{t}}\right)\boldsymbol{{i}}+\left(\mathrm{3}\boldsymbol{{t}}−\mathrm{2}\right)\boldsymbol{{j}}+\left(\mathrm{2}\boldsymbol{{t}}^{\mathrm{3}} −\mathrm{4}\boldsymbol{{t}}^{\mathrm{2}} \right)\boldsymbol{{k}}. \\ $$$$\boldsymbol{{find}} \\ $$$$\left(\boldsymbol{{a}}\right)\boldsymbol{{velocity}} \\ $$$$\left(\boldsymbol{{b}}\right)\boldsymbol{{speed}}\:\boldsymbol{{or}}\:\boldsymbol{{magnitude}}\:\boldsymbol{{of}}\:\boldsymbol{{velocity}} \\ $$$$\left(\boldsymbol{{c}}\right)\boldsymbol{{acceleration}} \\…
Question Number 200737 by Calculusboy last updated on 22/Nov/23 $$\boldsymbol{{Solve}}:\:\boldsymbol{{The}}\:\boldsymbol{{position}}\:\boldsymbol{{vector}}\:\boldsymbol{{of}}\:\boldsymbol{{a}}\:\boldsymbol{{particle}}\:\boldsymbol{{at}}\:\boldsymbol{{any}}\:\boldsymbol{{time}}\:\boldsymbol{{t}} \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{given}}\:\boldsymbol{{by}}\:\:\underset{−} {\boldsymbol{{r}}}=\left(\boldsymbol{{acoswt}}\right)\boldsymbol{{i}}+\left(\boldsymbol{{asinwt}}\right)\boldsymbol{{j}}+\boldsymbol{{bt}}^{\mathrm{2}} \boldsymbol{{k}} \\ $$$$\left(\boldsymbol{{a}}\right)\:\boldsymbol{{show}}\:\boldsymbol{{that}},\boldsymbol{{although}}\:\boldsymbol{{the}}\:\boldsymbol{{speed}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{particle}} \\ $$$$\boldsymbol{{increases}}\:\boldsymbol{{with}}\:\boldsymbol{{time}},\boldsymbol{{the}}\:\boldsymbol{{magnitude}} \\ $$$$\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{acceleration}}\:\boldsymbol{{is}}\:\boldsymbol{{always}}\:\boldsymbol{{constant}} \\ $$$$\left(\boldsymbol{{b}}\right)\:\boldsymbol{{describe}}\:\boldsymbol{{the}}\:\boldsymbol{{motion}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{particle}}\:\boldsymbol{{geometrically}} \\ $$ Terms…
Question Number 200684 by Spillover last updated on 21/Nov/23 $$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{−\mathrm{4}\pi} ^{\mathrm{4}\pi} \:\:\:\frac{\mid{x}\mid\:\mathrm{sin}\:^{\mathrm{2}{n}} {x}}{\mathrm{sin}\:^{\mathrm{2}{n}} {x}+\mathrm{cos}\:^{\mathrm{2}{n}} {x}}{dx} \\ $$$$ \\ $$$$ \\ $$ Answered by…