Question Number 85191 by sahnaz last updated on 19/Mar/20 $$\int\frac{\mathrm{z}+\mathrm{2}}{\mathrm{z}} \\ $$ Answered by sahnaz last updated on 19/Mar/20 $$\mathrm{dz} \\ $$ Answered by MJS…
Question Number 150721 by cesarL last updated on 14/Aug/21 $${calculate}\:{the}\:{convergence}\:{interval}\:{of}\:{the} \\ $$$${serie} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{{n}!} \\ $$ Answered by ArielVyny last updated…
Question Number 85166 by mathmax by abdo last updated on 19/Mar/20 $${find}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Commented by john santu last updated on 21/Mar/20 $$\mathrm{let}\:\mathrm{K}\:=\:\int\:\mathrm{x}^{\mathrm{2}}…
Question Number 85167 by mathmax by abdo last updated on 19/Mar/20 $${let}\:\varphi\left({x}\right)=\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:\:{find}\:\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {ln}\left(\varphi\left({x}\right)\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 85162 by mathmax by abdo last updated on 19/Mar/20 $$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 85160 by mathmax by abdo last updated on 19/Mar/20 $$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{a}}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{value}\:{of}\:{integrals}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}}…
Question Number 85158 by mathmax by abdo last updated on 19/Mar/20 $${calculate}\:{U}_{{n}} =\:\int_{−\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx}\:\:\:\left({n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$ Terms of Service Privacy Policy…
Question Number 85148 by M±th+et£s last updated on 19/Mar/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{3}} +{x}^{\mathrm{7}} }\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 150678 by krauss last updated on 14/Aug/21 $$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{3}−{x}^{\mathrm{2}} } \left(\mathrm{3}−{x}^{\mathrm{2}} −{y}\right){dy}\:{dx} \\ $$ Answered by Ar Brandon last…
Question Number 150656 by mnjuly1970 last updated on 14/Aug/21 Answered by Ar Brandon last updated on 14/Aug/21 $$\Omega=\frac{\mathrm{1}}{\mathrm{2}}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\Gamma\left(\mathrm{1}\right)+\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\pi}+\mathrm{1}+\frac{\sqrt{\pi}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{3}\sqrt{\pi}+\mathrm{2}\right) \\ $$ Commented by mnjuly1970…