Menu Close

Category: Integration

Prove-0-1-2-arcsin-2-x-x-dx-pii-6-pi-2-36-Li-2-1-i-3-2-1-3-3-

Question Number 222858 by MrGaster last updated on 09/Jul/25 $$\mathrm{Prove}: \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{arcsin}^{\mathrm{2}} {x}}{{x}}{dx}=\frac{\pi{i}}{\mathrm{6}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{36}}−\mathrm{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right)−\frac{\mathrm{1}}{\mathrm{3}}\zeta\left(\mathrm{3}\right) \\ $$ Commented by gabthemathguy25 last updated on…

0-x-x-e-x-1-x-dx-

Question Number 222850 by MrGaster last updated on 09/Jul/25 $$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{−{x}} {e}^{−{x}} }{\Gamma\left(\mathrm{1}−{x}\right)}{dx} \\ $$ Answered by MrGaster last updated on 09/Jul/25 $$\Gamma\left(\mathrm{1}−{x}\right)\Gamma\left({x}\right)=\frac{\pi}{\mathrm{sin}\left(\pi{x}\right)} \\…