Menu Close

Category: Integration

sec-5-3x-sec3xtan-3xdx-

Question Number 83276 by 09658867628 last updated on 29/Feb/20 $$\int\mathrm{s}{ec}^{\mathrm{5}} \mathrm{3}{x}\bullet\mathrm{s}{ec}\mathrm{3}{x}\mathrm{tan}\:\mathrm{3}{xdx} \\ $$ Answered by TANMAY PANACEA last updated on 29/Feb/20 $${t}={sec}\mathrm{3}{x}\rightarrow{dt}=\mathrm{3}{sec}\mathrm{3}{x}.{tan}\mathrm{3}{x}\:{dx} \\ $$$$\int{t}^{\mathrm{5}} ×\frac{{dt}}{\mathrm{3}}=\frac{{t}^{\mathrm{6}}…

Question-17676

Question Number 17676 by mondodotto@gmail.com last updated on 09/Jul/17 Answered by alex041103 last updated on 09/Jul/17 $$\mathrm{First}: \\ $$$$\frac{\mathrm{5cos}^{\mathrm{3}} \mathrm{x}\:+\:\mathrm{2sin}^{\mathrm{3}} \mathrm{x}}{\mathrm{2sin}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{x}}\:=\:\frac{\mathrm{5}}{\mathrm{2}}\:\frac{\mathrm{cosx}}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}+\frac{\mathrm{sinx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}…

1-find-0-pi-4-dx-2-a-sinx-areal-2-c-explicite-0-pi-4-sinx-2-asinx-2-dx-

Question Number 83206 by mathmax by abdo last updated on 28/Feb/20 $$\left.\mathrm{1}\right)\:{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{dx}}{\mathrm{2}+{a}\:{sinx}}\:\:\:\:\left({areal}\right) \\ $$$$\left.\mathrm{2}\right)\:{c}\:{explicite}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{sinx}}{\left(\mathrm{2}+{asinx}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by…