Question Number 147683 by mathmax by abdo last updated on 22/Jul/21 $$\mathrm{let}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{2x}−\mathrm{3}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:\mathrm{find}\:\int\:\mathrm{F}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\mathrm{en}\:\mathrm{deduire}\:\mathrm{la}\:\mathrm{decomposition}\:\mathrm{de}\:\mathrm{F}\:\mathrm{en}\:\mathrm{element}\:\mathrm{simples} \\ $$ Answered by mathmax by abdo…
Question Number 147680 by mathmax by abdo last updated on 22/Jul/21 $$\mathrm{find}\:\mathrm{by}\:\mathrm{residus}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 147682 by mathmax by abdo last updated on 22/Jul/21 $$\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{n}} −\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dans}\:\mathrm{C}\left(\mathrm{x}\right)\:\mathrm{puis}\:\mathrm{dans}\:\mathrm{R}\left(\mathrm{x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 82139 by jagoll last updated on 18/Feb/20 $$\int\:\:\frac{\sqrt{{x}^{\mathrm{4}} +{x}^{−\mathrm{4}} +\mathrm{2}}}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$ Answered by mind is power last updated on 18/Feb/20 $${x}^{\mathrm{4}}…
Question Number 147670 by mnjuly1970 last updated on 22/Jul/21 Answered by Olaf_Thorendsen last updated on 22/Jul/21 $$\mathrm{By}\:\mathrm{definition}\:\mathrm{H}_{{n}} ^{\left(\mathrm{2}\right)} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{H}_{{n}−\mathrm{1}} ^{\left(\mathrm{2}\right)}…
Question Number 147576 by qaz last updated on 22/Jul/21 $$\left(\mathrm{1}\right)::\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\underset{\mathrm{j}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mid\mathrm{i}−\mathrm{j}\mid=? \\ $$$$\left(\mathrm{2}\right)::\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\underset{\mathrm{j}=\mathrm{i}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{j}}=? \\ $$$$\left(\mathrm{3}\right)::\:\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}^{\mathrm{2}} } {\sum}}\left[\sqrt{\mathrm{i}}\right]=?…
Question Number 82022 by M±th+et£s last updated on 17/Feb/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 82020 by M±th+et£s last updated on 17/Feb/20 Commented by mind is power last updated on 17/Feb/20 $${thanx}\:{for}\:{this}\:{beautifull}\:\:{quation} \\ $$ Commented by mind is…
Question Number 81996 by msup trace by abdo last updated on 17/Feb/20 $${calculate}\:{I}_{{n}} =\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.} \:\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:{I}_{{n}} \\ $$$${conclude}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}}…
Question Number 81994 by msup trace by abdo last updated on 17/Feb/20 $${calculate}\:\int\int_{{W}} \left({x}+{y}\right){e}^{{x}−{y}} {dxdy} \\ $$$${with}\:{W}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${o},{A}\left(\mathrm{1},\mathrm{0}\right){and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$ Terms of Service Privacy…