Menu Close

Category: Integration

Question-80300

Question Number 80300 by john santu last updated on 02/Feb/20 Commented by ~blr237~ last updated on 02/Feb/20 $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\:\frac{\mathrm{1}}{{x}}=\mathrm{0}^{−\:\:} \:\:{and}\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\frac{\mathrm{1}}{{x}}=−\infty\:\: \\ $$$$\left.\underset{{x}\rightarrow\mathrm{0}^{−} }…

Use-Abel-summation-to-evaluate-n-1-1-2n-1-2-n-1-2-ln-2-1-

Question Number 145827 by qaz last updated on 08/Jul/21 $$\mathrm{Use}\:\mathrm{Abel}\:\mathrm{summation}\:\mathrm{to}\:\mathrm{evaluate}\::: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2n}−\mathrm{1}\right)\centerdot\mathrm{2}^{\mathrm{n}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$ Answered by Ar Brandon last updated on 08/Jul/21…

1-1-9x-2-dx-

Question Number 145777 by Engr_Jidda last updated on 08/Jul/21 $$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{dx} \\ $$ Answered by ArielVyny last updated on 08/Jul/21 $$\int\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }{dx}=\int\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\left(\mathrm{1}−\mathrm{3}{x}\right)\left(\mathrm{1}+\mathrm{3}{x}\right)}{dx} \\…

2x-1-x-2-4x-5-dx-

Question Number 145775 by Engr_Jidda last updated on 08/Jul/21 $$\int\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{5}}}{dx} \\ $$ Answered by mathmax by abdo last updated on 08/Jul/21 $$\Upsilon=\int\:\:\frac{\mathrm{2x}+\mathrm{4}−\mathrm{3}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4x}+\mathrm{5}}}\mathrm{dx}\:=\int\:\:\frac{\mathrm{2x}+\mathrm{4}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4x}+\mathrm{5}}}\mathrm{dx}−\mathrm{3}\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}^{\mathrm{2}}…

1-sin-2-x-cos-2-x-dx-

Question Number 14688 by tawa tawa last updated on 03/Jun/17 $$\int\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\:\mathrm{dx} \\ $$ Answered by ajfour last updated on 03/Jun/17 $$\int\frac{\mathrm{4}}{\left(\mathrm{2sin}\:{x}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:\:=\mathrm{4}\int\frac{{dx}}{\left(\mathrm{sin}\:\mathrm{2}{x}\right)^{\mathrm{2}} }…