Question Number 14667 by Umar math last updated on 03/Jun/17 Commented by prakash jain last updated on 03/Jun/17 $$\frac{\mathrm{1}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{3}} }=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} } \\…
Question Number 145723 by madwdah last updated on 07/Jul/21 Answered by bramlexs22 last updated on 07/Jul/21 $$\int\:\mathrm{x}.\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{xe}^{\mathrm{2x}} −\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{\mathrm{2x}} \left(\mathrm{2x}−\mathrm{1}\right)+\mathrm{c} \\ $$…
Question Number 145722 by madwdah last updated on 07/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 14646 by tawa tawa last updated on 03/Jun/17 $$\mathrm{Prove}\:\mathrm{that}:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{sin}\left(\mathrm{x}\right)\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{dx}\:>\:\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 145676 by mnjuly1970 last updated on 07/Jul/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:……{calculus}… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\:\mathrm{3}} \:\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:\:{n}}\end{pmatrix}}\:=\:\frac{\mathrm{2}}{\mathrm{5}}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$ Answered by Kamel…
Question Number 145671 by mathlove last updated on 07/Jul/21 Commented by mathlove last updated on 07/Jul/21 $${pleas}\:{help}\:{me} \\ $$ Answered by imjagoll last updated on…
Question Number 14588 by tawa tawa last updated on 02/Jun/17 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{roots}\:\mathrm{of}\:\:\:−\:\mathrm{16},\:\:\:\mathrm{giving}\:\mathrm{the}\:\mathrm{results}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\:\mathrm{a}\:+\:\mathrm{jb}. \\ $$ Answered by mrW1 last updated on 03/Jun/17 $${z}^{\mathrm{4}} =−\mathrm{16} \\ $$$${z}={x}+{iy}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right) \\…
Question Number 145645 by physicstutes last updated on 06/Jul/21 $$\int_{\mathrm{0}} ^{{a}} {x}^{−\frac{{x}}{{a}}} {dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 145646 by physicstutes last updated on 06/Jul/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{lenght}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:{y}^{\mathrm{2}} \:=\:\frac{{x}^{\mathrm{3}} }{{a}}\:\mathrm{where}\:{a}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{for} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\frac{\mathrm{7}{a}}{\mathrm{3}} \\ $$ Answered by Olaf_Thorendsen last updated on 06/Jul/21 $${y}^{\mathrm{2}} \:=\:\frac{{x}^{\mathrm{3}}…
Question Number 145636 by mathmax by abdo last updated on 06/Jul/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by Dwaipayan Shikari last updated on…