Question Number 145635 by mathmax by abdo last updated on 06/Jul/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{3x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 14560 by tawa tawa last updated on 02/Jun/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 14523 by 1kanika# last updated on 01/Jun/17 Answered by linkelly0615 last updated on 01/Jun/17 $${set}\:{dV}={dxdydz} \\ $$$${Origin}=\int\int\int_{\left[\mathrm{0},\mathrm{1}\right)^{\mathrm{3}} } \left(\mathrm{0}+\mathrm{0}+\mathrm{0}\right){dV}=\mathrm{0} \\ $$ Commented by…
Question Number 145588 by naka3546 last updated on 06/Jul/21 Answered by chengulapetrom last updated on 06/Jul/21 $${let}\:\mathrm{2}{sec}\theta={x} \\ $$$$\mathrm{2}{sec}\theta{tan}\theta{d}\theta={dx} \\ $$$$=\mathrm{2}\int\frac{\mathrm{2}{tan}^{\mathrm{2}} \theta{sec}\theta}{\mathrm{2}{sec}\theta}{d}\theta \\ $$$$=\mathrm{2}\int{tan}^{\mathrm{2}} \theta{d}\theta…
Question Number 80052 by john santu last updated on 30/Jan/20 $$\int\:\mathrm{e}^{\mathrm{sin}\:\mathrm{2x}} .\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:= \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 14510 by tawa tawa last updated on 01/Jun/17 $$\int\:\:\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 145549 by physicstutes last updated on 05/Jul/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:{y}\:=\:{f}\left({x}\right)\:\mathrm{where}\:{f}\left({x}\right)\:=\:\mathrm{ln}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)\:.\: \\ $$ Answered by gsk2684 last updated on 06/Jul/21 $$\mathrm{function}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{only}\:\mathrm{if}\: \\ $$$$\mathrm{0}<\frac{\mathrm{x}+\mathrm{3}}{\mathrm{x}−\mathrm{1}}\Rightarrow\mathrm{0}<\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{x}−\mathrm{1}\right) \\…
Question Number 14481 by tawa tawa last updated on 01/Jun/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 145547 by physicstutes last updated on 05/Jul/21 $${I}_{{m},{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{{m}} \right)^{{n}} {dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{I}_{{m},{n}} \left({mn}+\mathrm{1}\right)\:=\:{I}_{{m},{n}−\mathrm{1}} \\ $$ Answered by qaz last updated…
Question Number 145517 by bramlexs22 last updated on 05/Jul/21 $${Find}\:{the}\:{center}\:{of}\:{mass}\:{for}\: \\ $$$${the}\:{thin}\:{plate}\:{bounded}\:{by}\: \\ $$$${curves}\:{g}\left({x}\right)=\frac{{x}}{\mathrm{2}}\:{and}\:{f}\left({x}\right)=\sqrt{{x}} \\ $$$$,\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:. \\ $$ Answered by iloveisrael last updated on 05/Jul/21…