Menu Close

Category: Integration

Find-the-contour-integral-c-z-z-dz-Along-the-path-C-from-1-j-to-5-j3-and-composed-of-two-straight-line-segments-the-first-from-1-j-to-5-j-to-5-j3-

Question Number 14401 by tawa tawa last updated on 31/May/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{contour}\:\mathrm{integral}\:\:\:\int\:\mathrm{c}\:\mathrm{z}^{\mathrm{z}} \:\mathrm{dz} \\ $$$$\mathrm{Along}\:\mathrm{the}\:\mathrm{path}\:\mathrm{C}\:\mathrm{from}\:\:−\mathrm{1}+\mathrm{j}\:\mathrm{to}\:\mathrm{5}+\mathrm{j3}\:\:\mathrm{and}\:\mathrm{composed}\:\mathrm{of}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{line}\: \\ $$$$\mathrm{segments}\:\mathrm{the}\:\mathrm{first}\:\mathrm{from}\:\:−\mathrm{1}+\mathrm{j}\:\mathrm{to}\:\mathrm{5}+\mathrm{j}\:\mathrm{to}\:\mathrm{5}+\mathrm{j3} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Evaluate-tanx-cotx-tanx-cotx-sec-2-x-dx-

Question Number 14394 by tawa tawa last updated on 31/May/17 $$\mathrm{Evaluate}\:\:\:\int\:\left(\frac{\mathrm{tanx}\:−\:\mathrm{cotx}}{\mathrm{tanx}\:+\:\mathrm{cotx}}\:\mathrm{sec}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx} \\ $$ Answered by RasheedSindhi last updated on 31/May/17 $$\mathrm{Evaluate}\:\:\:\int\:\left(\frac{\mathrm{tanx}\:−\:\mathrm{cotx}}{\mathrm{tanx}\:+\:\mathrm{cotx}}\:\mathrm{sec}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx} \\ $$$$\:\int\:\left(\frac{\frac{\mathrm{sinx}}{\mathrm{cosx}}\:−\:\frac{\mathrm{cosx}}{\mathrm{sinx}}}{\frac{\mathrm{sinx}}{\mathrm{cosx}}\:+\:\frac{\mathrm{cosx}}{\mathrm{sinx}}}\:\mathrm{sec}^{\mathrm{2}}…

sin-x-2-2-dx-

Question Number 145456 by math55 last updated on 05/Jul/21 $$\int\boldsymbol{{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{2}\right)\boldsymbol{{dx}} \\ $$ Answered by Olaf_Thorendsen last updated on 05/Jul/21 $$\mathrm{F}\left({x}\right)\:=\:\int\mathrm{sin}\left({x}^{\mathrm{2}} +\mathrm{2}\right){dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int\left(\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left(\mathrm{2}\right)+\mathrm{cos}\left({x}^{\mathrm{2}}…