Question Number 144638 by liberty last updated on 27/Jun/21 $$\mathrm{Triangle}\:\mathrm{AOC}\:\mathrm{inscribed} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{region}\:\mathrm{cut}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{line}\:\mathrm{y}=\mathrm{a}^{\mathrm{2}} \:.\mathrm{Find}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\mathrm{of}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangle}\:\mathrm{to}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{parabolic}\:\mathrm{region}\:\mathrm{as}\:\mathrm{a}\:\mathrm{approaches} \\…
Question Number 79100 by mathmax by abdo last updated on 22/Jan/20 $${calculate}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$ Commented by mathmax by abdo…
Question Number 79096 by mathmax by abdo last updated on 22/Jan/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$ Commented by mind is power last updated on…
Question Number 79092 by mathmax by abdo last updated on 22/Jan/20 $${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } {arctan}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Terms of Service Privacy Policy…
Question Number 79095 by mathmax by abdo last updated on 22/Jan/20 $${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({x}\right){sin}\left(\mathrm{2}{x}\right)….{sin}\left({nx}\right)}{{x}^{{n}} }{dx}\:\:{with}\:{n}\geqslant\mathrm{2}\:{integr} \\ $$ Commented by mind is power last updated…
Question Number 79094 by mathmax by abdo last updated on 22/Jan/20 $${find}\:{I}_{{a},{b}} \:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({ax}\right){sin}\left({bx}\right)}{{x}^{\mathrm{2}} }{dx}\:\:\:{witha}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$ Answered by mind is power last updated…
Question Number 79091 by mathmax by abdo last updated on 22/Jan/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } \:{arctan}\left({x}\right)}{{x}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 79093 by mathmax by abdo last updated on 22/Jan/20 $${find}\:\:{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\lambda{x}^{\mathrm{2}} } {ch}\left({x}^{\mathrm{2}} \:+\lambda\right){dx}\:\:{with}\:\lambda>\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 79086 by key of knowledge last updated on 22/Jan/20 $$\mathrm{if}:\int\mathrm{cos}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\int\mathrm{sin}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=?\:\left(\mathrm{use}\:\mathrm{g}\left(\mathrm{x}\right)\right) \\ $$ Commented by mr W last updated on 23/Jan/20 $${how}\:{did}\:{you}\:{get}…
Question Number 144597 by mathmax by abdo last updated on 26/Jun/21 $$\mathrm{let}\:\varphi\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{3}+\mathrm{cosx}} \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by Olaf_Thorendsen last updated on 26/Jun/21 $${a}_{\mathrm{0}} \:=\:\frac{\mathrm{1}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}}…