Question Number 77995 by mathmax by abdo last updated on 12/Jan/20 $${calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by msup trace by abdo last…
Question Number 77987 by aliesam last updated on 12/Jan/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 143508 by mnjuly1970 last updated on 15/Jun/21 $$ \\ $$$$\:\:\:\:\:\:\:\:……….{Calculus}…….. \\ $$$$\:\:\:\:{i}:\:\:\:\boldsymbol{\phi}_{\mathrm{1}} :=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right).{ln}\left({x}\right)}{{x}}{dx} \\ $$$$\:\:\:{ii}:\:\:\:\boldsymbol{\phi}_{\mathrm{2}} :=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left({x}\right).{ln}\left(\mathrm{1}−{x}\right)}{{x}}\:{dx} \\…
Question Number 12436 by tawa last updated on 22/Apr/17 $$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{x}} }\:\mathrm{dx} \\ $$ Commented by mrW1 last updated on 22/Apr/17 $${do}\:{you}\:{mean}\:\int\frac{{dx}}{{x}^{{x}} }\:? \\ $$$${I}\:{don}'{t}\:{think}\:{x}^{{x}} \:{as}\:{well}\:{as}\:{x}^{−{x}}…
Question Number 143506 by tugu last updated on 15/Jun/21 $$\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{1}}{{e}^{−{x}} +{e}^{{x}} }\:{dx}=? \\ $$$$ \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 143502 by mnjuly1970 last updated on 15/Jun/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 77962 by aliesam last updated on 12/Jan/20 $$\int\frac{{dx}}{\mathrm{1}+\left({tan}\left({x}\right)\right)^{\sqrt{\mathrm{2}}} }\:{dx} \\ $$ Commented by jagoll last updated on 13/Jan/20 $${how}\:{to}\:{solve}\:{this}\:{problem} \\ $$ Commented by…
Question Number 77960 by jagoll last updated on 12/Jan/20 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{4}} +{x}}\:{dx}? \\ $$ Commented by john santu last updated on 12/Jan/20 $${we}\:{divide}\:{by}\:{x}^{\mathrm{2}} \\ $$$$\int\:\frac{\mathrm{2}{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}}…
Question Number 12422 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Apr/17 Commented by mrW1 last updated on 22/Apr/17 $${f}\left({x}\right)=\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{2}{x}\mathrm{cos}\:\varphi+\mathrm{1}}={F}\left({x},\varphi\right)+{C} \\ $$$${f}\left(\mathrm{0}\right)={F}\left(\mathrm{0},\varphi\right)+{C} \\ $$$$\underset{\varphi\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left(\mathrm{0}\right)=\underset{\varphi\rightarrow\mathrm{0}} {\mathrm{lim}}\:{F}\left(\mathrm{0},\varphi\right)+{C} \\…
Question Number 143487 by mathmax by abdo last updated on 15/Jun/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{log}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com