Menu Close

Category: Integration

Question-141534

Question Number 141534 by sarkor last updated on 20/May/21 Answered by som(math1967) last updated on 20/May/21 $$\int\boldsymbol{{cos}}^{\mathrm{2}} \boldsymbol{{xsin}}^{\mathrm{8}} \boldsymbol{{xcosxdx}} \\ $$$$=\int\left(\mathrm{1}−\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{x}}\right)\boldsymbol{{sin}}^{\mathrm{8}} \boldsymbol{{xd}}\left(\boldsymbol{{sinx}}\right) \\ $$$$=\int\boldsymbol{{sin}}^{\mathrm{8}}…

Question-141530

Question Number 141530 by sarkor last updated on 20/May/21 Commented by mohammad17 last updated on 20/May/21 $$=\int\:\frac{{x}^{\mathrm{2}} −\mathrm{9}+\mathrm{9}}{\:\sqrt{{x}−\mathrm{3}}}{dx}=\int\:\frac{\left({x}−\mathrm{3}\right)\left({x}+\mathrm{3}\right)}{\:\sqrt{{x}−\mathrm{3}}}{dx}+\int\:\frac{\mathrm{9}}{\:\sqrt{{x}−\mathrm{3}}}{dx} \\ $$$$ \\ $$$$=\int\left(\sqrt{{x}−\mathrm{3}}\right)\left({x}+\mathrm{3}\right){dx}+\int\mathrm{9}\left({x}−\mathrm{3}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$…

Question-141531

Question Number 141531 by sarkor last updated on 20/May/21 Commented by mohammad17 last updated on 20/May/21 $${let}\:{z}^{\mathrm{6}} ={x}+\mathrm{1}\Rightarrow\mathrm{6}{z}^{\mathrm{5}} {dz}={dx} \\ $$$$ \\ $$$$\int\:\:\frac{\mathrm{6}{z}^{\mathrm{3}} \left({z}^{\mathrm{4}} +{z}\right)}{\left({z}+\mathrm{1}\right)}{dz}=\mathrm{6}\int\:\:\frac{{z}^{\mathrm{7}}…

Question-141526

Question Number 141526 by sarkor last updated on 20/May/21 Answered by rs4089 last updated on 20/May/21 $$\int\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}\:}\:{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{2}{x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}\:{dx} \\ $$$${let}\:{x}^{\mathrm{2}} +\mathrm{2}{x}={t}\:\Rightarrow\left(\mathrm{2}{x}+\mathrm{2}\right){dx}={dt} \\…

Question-75986

Question Number 75986 by Ajao yinka last updated on 21/Dec/19 Commented by abdomathmax last updated on 24/Dec/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({xt}\right){cos}\left({nx}\right)}{{x}}{dx}\:\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${f}^{'} \left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}}…

Question-75984

Question Number 75984 by Ajao yinka last updated on 21/Dec/19 Answered by mind is power last updated on 23/Dec/19 $$\mathrm{y}=\mathrm{x}^{\mathrm{2}} \\ $$$$\Rightarrow\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{log}\left(\mathrm{y}\right)}{\mathrm{4}\left(\mathrm{1}+\mathrm{y}+\mathrm{y}^{\mathrm{2}} \right)}\mathrm{dy}…