Menu Close

Category: Integration

x-2-cos-x-2-dx-

Question Number 141333 by cesarL last updated on 17/May/21 $$\int{x}^{\mathrm{2}} \mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right){dx} \\ $$ Answered by qaz last updated on 17/May/21 $$\int{x}^{\mathrm{2}} \mathrm{cos}\:\frac{{x}}{\mathrm{2}}{dx} \\ $$$$=\mathrm{2}{x}^{\mathrm{2}} \mathrm{sin}\:\frac{{x}}{\mathrm{2}}−\mathrm{4}\int{x}\mathrm{sin}\:\frac{{x}}{\mathrm{2}}{dx}…

a-a-sin-x-cos-x-dx-

Question Number 10241 by FilupSmith last updated on 31/Jan/17 $$\int_{{a}} ^{\:{a}+\delta} \frac{\mathrm{sin}\left({x}\right)}{\mathrm{cos}\left({x}+\delta\right)}{dx}\:=\:??? \\ $$ Commented by prakash jain last updated on 31/Jan/17 $$\frac{\mathrm{sin}\left({x}\right)}{\mathrm{cos}\left({x}+\delta\right)}=\frac{\mathrm{sin}\left({x}+\delta−\delta\right)}{\mathrm{cos}\left({x}+\delta\right)} \\ $$$$=\frac{\mathrm{sin}\:\left({x}+\delta\right)\mathrm{cos}\:\delta−\mathrm{cos}\:\left({x}+\delta\right)\mathrm{sin}\:\delta}{\mathrm{cos}\:\left({x}+\delta\right)}…

Question-75770

Question Number 75770 by Ajao yinka last updated on 16/Dec/19 Commented by ~blr237~ last updated on 17/Dec/19 $$\mathrm{A}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} \sqrt{\mathrm{sinh2x}}}\:=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{e}^{−\mathrm{x}} \mathrm{dx}}{\:\sqrt{\mathrm{e}^{\mathrm{2x}} −\mathrm{e}^{−\mathrm{2x}}…