Menu Close

Category: Integration

f-x-4-3-2-1-3-

Question Number 8794 by faster1998 last updated on 28/Oct/16 $${f}\left({x}\right)=×^{\frac{\mathrm{4}}{\mathrm{3}}} −\mathrm{2}×^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$ Commented by ridwan balatif last updated on 28/Oct/16 $$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} .\mathrm{x}−\mathrm{2x}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}}…

x-2-2x-1-1-2-dx-

Question Number 8762 by tawakalitu last updated on 26/Oct/16 $$\int\mathrm{x}^{\mathrm{2}} \left(\mathrm{2x}\:+\:\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} \:\mathrm{dx} \\ $$ Answered by sou1618 last updated on 26/Oct/16 $${I}=\int{x}^{\mathrm{2}} \sqrt{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$$${t}=\mathrm{2}{x}+\mathrm{1}…

x-3x-1-dx-

Question Number 8763 by tawakalitu last updated on 26/Oct/16 $$\int\mathrm{x}\sqrt{\mathrm{3x}\:+\:\mathrm{1}}\:\:\mathrm{dx} \\ $$ Commented by FilupSmith last updated on 26/Oct/16 $${u}=\mathrm{3}{x}+\mathrm{2}\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{3}}\left({u}−\mathrm{2}\right) \\ $$$${du}=\mathrm{3}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int\mathrm{3}{x}\sqrt{\mathrm{3}{x}+\mathrm{2}}{dx} \\…

n-0-sin-n-1-x-4-n-1-

Question Number 139826 by qaz last updated on 01/May/21 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\:\left[\left({n}−\mathrm{1}\right){x}\right]}{\mathrm{4}^{{n}+\mathrm{1}} }=? \\ $$ Answered by mnjuly1970 last updated on 01/May/21 $$\:\:\:\:\:\Omega:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{sin}\left(\left({n}−\mathrm{1}\right){x}\right)}{\mathrm{4}^{{n}+\mathrm{1}}…

0-1-x-ln-1-1-x-dx-solution-0-1-x-n-1-x-n-n-dx-n-1-1-n-0-1-x-n-1-2-dx-n-1-1-n-n-3-2-

Question Number 139811 by mnjuly1970 last updated on 01/May/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{{x}}\:{ln}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right){dx} \\ $$$$\:\:\:\:\:{solution}: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{{x}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\::=\underset{{n}=\mathrm{1}}…