Question Number 193526 by SaRahAli last updated on 16/Jun/23 Answered by MM42 last updated on 16/Jun/23 $${I}=\int\:\frac{{sinx}×{cosx}}{{sinx}+{cos}^{\mathrm{2}} {x}}\:{dx}=−\int\:\frac{{sinx}×{cosx}}{{sinx}−{sinx}−\mathrm{1}}\:{dx} \\ $$$${let}\:\:\:{sinx}={u}\Rightarrow{cosxdx}={du} \\ $$$$\Rightarrow{I}=−\int\:\frac{{udu}}{{u}^{\mathrm{2}} −{u}−\mathrm{1}}\:{du}\:=\int\:\frac{{A}}{{u}−{u}_{\mathrm{1}} }\:{du}\:+\int\:\frac{{B}}{{u}−{u}_{\mathrm{2}} }\:{du}\:…
Question Number 193538 by cortano12 last updated on 16/Jun/23 $$\:\:\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{6}} +\mathrm{1}}\:=? \\ $$ Answered by Subhi last updated on 16/Jun/23 $$\int\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}\right)}\:\Rrightarrow\:\int\frac{{a}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{{bx}^{\mathrm{2}}…
Question Number 193512 by SaRahAli last updated on 15/Jun/23 Answered by Subhi last updated on 15/Jun/23 $$\int\frac{\mathrm{1}}{\frac{\mathrm{1}}{{cos}\left({x}\right)}.\frac{{sin}\left({x}\right)}{{cos}\left({x}\right)}}\:\Rrightarrow\:\int\frac{{cos}^{\mathrm{2}} \left({x}\right)}{{sin}\left({x}\right)}.{dx} \\ $$$$\int\frac{\mathrm{1}−{sin}^{\mathrm{2}} \left({x}\right)}{{sin}\left({x}\right)}.{dx}\:\:\looparrowright\:\int{csc}\left({x}\right)\:+\:\int−{sin}\left({x}\right) \\ $$$$\int{csc}\left({x}\right)\:+{cos}\left({x}\right) \\ $$$$\int{csc}\left({x}\right).\frac{{csc}\left({x}\right)+{cot}\left({x}\right)}{{csc}\left({x}\right)+{cot}\left({x}\right)}\:+\:{cos}\left({x}\right)…
Question Number 193439 by Nimnim111118 last updated on 14/Jun/23 $$\underset{\:\:\mathrm{0}} {\int}^{\pi/\mathrm{2}} \frac{\sqrt[{\mathrm{3}}]{{tanx}}}{\left({sinx}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by Nimnim111118 last updated on 14/Jun/23 $${help}… \\ $$…
Question Number 193409 by cortano12 last updated on 13/Jun/23 $$\:\:\:\Subset \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 193377 by Humble last updated on 12/Jun/23 $${Evaluate} \\ $$$${I}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$ Commented by Frix last updated…
Question Number 193278 by Nimnim111118 last updated on 09/Jun/23 $${Please}\:{Help}…!! \\ $$$$\:\:\:\:\underset{\:\:\:\:\mathrm{0}} {\int}^{\:\:\infty} {x}.{e}^{−{x}} .{sinx}.{dx}\: \\ $$$$ \\ $$ Answered by qaz last updated on…
Question Number 193307 by TUN last updated on 09/Jun/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 193214 by Humble last updated on 07/Jun/23 $${Evaluate} \\ $$$$\Omega=\int_{−\infty} ^{\:\infty} \frac{{e}^{\frac{{x}}{\mathrm{2}}} {ln}\left(\sqrt{\frac{\mathrm{3}−{x}}{\mathrm{3}+{x}}}\right)}{{tanh}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{3}}\right)\left(\mathrm{1}+{e}^{{x}} \right)}{dx} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 193231 by C2coder last updated on 07/Jun/23 Answered by leodera last updated on 08/Jun/23 $${F}\left({a}\right)\:=\:\int_{−\infty} ^{\infty} \frac{{e}^{−{x}^{\mathrm{2}} } \mathrm{sin}\:^{\mathrm{2}} \left({ax}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\…