Question Number 139750 by bramlexs22 last updated on 01/May/21 $$\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\left(\mathrm{1}−\mathrm{x}^{\mathrm{7}} \right)^{\mathrm{1}/\mathrm{3}} \:\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{7}} \:\right)\mathrm{dx}\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74210 by malikmasood3535@gmail.com last updated on 20/Nov/19 $$\int{e}^{{t}} \mathrm{cos}\:{e}^{{t}} {dt} \\ $$ Answered by mind is power last updated on 20/Nov/19 $$\int{e}^{{t}} {cos}\left({t}\right)\:{dt}={sin}\left({e}^{{t}}…
Question Number 139746 by mathlove last updated on 01/May/21 Answered by bramlexs22 last updated on 01/May/21 $$\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{t} \\ $$$$\:\Rightarrow\mathrm{t}+\frac{\mathrm{1}}{\mathrm{t}}\:=\:\mathrm{e}+\mathrm{e}^{−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{t}^{\mathrm{2}} −\left(\mathrm{e}+\mathrm{e}^{−\mathrm{1}} \right)\mathrm{t}+\mathrm{1}=\mathrm{0} \\…
Question Number 8672 by swapnil last updated on 20/Oct/16 $$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{x}.\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx} \\ $$$$\mathrm{evaluate}\:\mathrm{above}\:\mathrm{expression}. \\ $$ Answered by 123456 last updated on 21/Oct/16…
Question Number 139734 by mnjuly1970 last updated on 30/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\:{nice}\:…{calculus}….. \\ $$$$\:\:\:\:\:\:\:{calculate}\:::\:\: \\ $$$$\:\:\:\:\:\:\mathscr{F}\::=\:\int_{\mathrm{0}} ^{\:\infty} {te}^{−{t}} {sin}^{\mathrm{3}} \left({t}\right){dt}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………………….. \\ $$ Answered…
Question Number 139708 by qaz last updated on 30/Apr/21 $${Prove}:\:\:\:\mathrm{1}+\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}^{{n}} \mathrm{cos}\:\left({nx}\right)=\frac{\mathrm{1}−{a}^{\mathrm{2}} }{\mathrm{1}−\mathrm{2}{a}\mathrm{cos}\:{x}+{a}^{\mathrm{2}} },\:\:\:\:\:\:\left(\mid{a}\mid<\mathrm{1}\right) \\ $$$${And}\:{calculate}::\:\:\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{8sin}\:^{\mathrm{2}} {x}}{dx}=\frac{\mathrm{5}\pi^{\mathrm{3}} }{\mathrm{36}}−\frac{\pi}{\mathrm{6}}{ln}^{\mathrm{2}} \mathrm{2} \\ $$…
Question Number 8632 by swapnil last updated on 19/Oct/16 $${evaluate} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\mathrm{1}+{x}\:{dy}\:{dx} \\ $$$$\: \\ $$ Answered by FilupSmith last updated…
Question Number 139696 by mnjuly1970 last updated on 30/Apr/21 Answered by Dwaipayan Shikari last updated on 30/Apr/21 $$\vartheta\left(\theta\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {sin}\left({n}\theta\right)}{{n}\:} \\ $$$$\vartheta\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}}…
Question Number 74131 by Learner-123 last updated on 19/Nov/19 $${Can}\:{anyone}\:{share}\:{the}\:{solutions}\:\left({pdf}\right) \\ $$$${of}\:{the}\:{book}\:{Advanced}\:{engineering} \\ $$$${Mathematics}\:{by}\:{Erwin}\:{kreyzig}\:\mathrm{8}{th} \\ $$$${edition}\:? \\ $$$$ \\ $$ Commented by ajfour last updated…
Question Number 74117 by necxxx last updated on 19/Nov/19 $${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{that}\:{lies} \\ $$$${within}\:{the}\:{sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16},\:{above} \\ $$$${the}\:{x}-{y}\:{plane}\:{and}\:{below}\:{the}\:{cone} \\ $$$${z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$ Commented by…