Menu Close

Category: Integration

Evaluate-0-1-2-1-x-2-dx-By-direct-integration-and-by-expanding-as-a-power-series-

Question Number 8375 by tawakalitu last updated on 09/Oct/16 $$\mathrm{Evaluate}\::\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}\:−\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$$$\mathrm{By}\:\mathrm{direct}\:\mathrm{integration}\:\mathrm{and}\:\mathrm{by}\:\mathrm{expanding} \\ $$$$\mathrm{as}\:\mathrm{a}\:\mathrm{power}\:\mathrm{series}. \\ $$ Terms of Service Privacy Policy Contact:…

Question-139432

Question Number 139432 by normabaru last updated on 27/Apr/21 Answered by Jme Eduardo last updated on 27/Apr/21 $$\left({a}\right)\:\:{if}\:\:{x}={t}^{\mathrm{2}} \:\:{and}\:\:{y}={t} \\ $$$$ \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{\mathrm{2}{t}^{\mathrm{4}} }{{t}^{\mathrm{4}}…

6-sinx-cosx-sinx-cosx-dx-

Question Number 8281 by tawakalitu last updated on 06/Oct/16 $$\int\frac{\mathrm{6}\:\mathrm{sinx}\:\mathrm{cosx}}{\mathrm{sinx}\:+\:\mathrm{cosx}}\:\mathrm{dx} \\ $$ Answered by Yozzias last updated on 06/Oct/16 $$\frac{\mathrm{sinx}}{\mathrm{sinx}+\mathrm{cosx}}=\mathrm{1}−\frac{\mathrm{cosx}}{\mathrm{sinx}+\mathrm{cosx}} \\ $$$$\therefore\:\mathrm{I}=\int\frac{\mathrm{sinxcosx}}{\mathrm{sinx}+\mathrm{cosx}}\mathrm{dx}=\int\left(\mathrm{1}−\frac{\mathrm{cosx}}{\mathrm{sinx}+\mathrm{cosx}}\right)\mathrm{cosxdx} \\ $$$$=\int\left(\mathrm{cosx}−\frac{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}{\mathrm{sinx}+\mathrm{cosx}}\right)\mathrm{dx}…