Question Number 73275 by solihin last updated on 09/Nov/19 $$ \\ $$$$ \\ $$$$\int\frac{\mathrm{4}}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}−{x}\delta\varkappa}}\:\:\:\:? \\ $$$$ \\ $$ Commented by MJS last updated on…
Question Number 138810 by mathdanisur last updated on 18/Apr/21 $$\underset{\:\mathrm{0}} {\overset{\:\pi/\mathrm{2}} {\int}}\frac{{xsin}\left({x}\right)}{\mathrm{1}−{cosx}}\centerdot{log}\left(\mathrm{1}+{cosx}\right){dx}=? \\ $$ Answered by phanphuoc last updated on 18/Apr/21 $${u}={x},{dv}={ln}\left(\mathrm{1}+{cosx}\right){dcosx}/\left(\mathrm{1}−{cosx}\right) \\ $$ Commented…
Question Number 138801 by mnjuly1970 last updated on 18/Apr/21 $$\: \\ $$$$\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\infty} \left(\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}\right)^{{n}} {e}^{{x}} }{{n}!}{dx}\right)=? \\ $$ Answered by Kamel last updated on…
Question Number 138799 by TheSupreme last updated on 18/Apr/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{tan}\left(\mathrm{x}\right)−\alpha\right){dx}=… \\ $$$$\alpha\in\mathbb{C} \\ $$ Answered by mathmax by abdo last updated on 19/Apr/21…
Question Number 73258 by Lontum Hans last updated on 09/Nov/19 Answered by MJS last updated on 09/Nov/19 $$\mathrm{well},\:\mathrm{just}\:\mathrm{do}\:\mathrm{it} \\ $$$${u}=\mathrm{1}+\mathrm{cosh}\:{x}\:\rightarrow\:{dx}=\frac{{du}}{\mathrm{sinh}\:{x}} \\ $$$$…=\underset{\mathrm{2}} {\overset{\mathrm{3}} {\int}}\frac{{du}}{{u}\left({u}−\mathrm{1}\right)}=\left[\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}}\right]_{\mathrm{2}} ^{\mathrm{3}}…
Question Number 73238 by mathmax by abdo last updated on 08/Nov/19 $${let}\:\mathrm{0}<{a}<\mathrm{1}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt} \\ $$ Commented by mathmax by…
Question Number 138771 by qaz last updated on 18/Apr/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {ln}\:\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{tan}\:^{\mathrm{4}} {x}\right){dx}=? \\ $$ Answered by Kamel last updated on 19/Apr/21 Answered by…
Question Number 73230 by mathmax by abdo last updated on 08/Nov/19 $${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}+{x}^{{n}} }{\mathrm{2}+{x}^{\mathrm{2}{n}} }{dx}\:\:{and}\:{J}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}+{x}^{\mathrm{3}{n}} }{\mathrm{5}+{x}^{\mathrm{7}{n}} }{dx} \\ $$$${with}\:{n}\:{integr}\:{natural}\:{not}\:\mathrm{0} \\…
Question Number 73231 by mathmax by abdo last updated on 08/Nov/19 $${find}\:{the}\:{sum}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{1}\right){e}^{−{n}} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 73225 by mathmax by abdo last updated on 08/Nov/19 $${calculate}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} {ln}\left({x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta\:+\mathrm{1}\right){d}\theta\:\:{with}\:{x}\:{real}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com