Menu Close

Category: Integration

reposting-a-former-question-x-1-5-1-x-1-dx-t-x-1-10-dx-10-x-9-1-10-dx-10-t-9-t-1-t-4-t-3-t-2-t-1-dt-10-t-6-t-4-t-dt-10-t-t-2-t-1-t-4-t-3-

Question Number 73155 by MJS last updated on 06/Nov/19 $$\mathrm{reposting}\:\mathrm{a}\:\mathrm{former}\:\mathrm{question}… \\ $$$$\int\frac{\sqrt[{\mathrm{5}}]{{x}}−\mathrm{1}}{\:\sqrt{{x}}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{10}}]{{x}}\:\rightarrow\:{dx}=\mathrm{10}\sqrt[{\mathrm{10}}]{{x}^{\mathrm{9}} }{dx}\right] \\ $$$$=\mathrm{10}\int\frac{{t}^{\mathrm{9}} \left({t}−\mathrm{1}\right)}{{t}^{\mathrm{4}} −{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt}= \\ $$$$=\mathrm{10}\int\left({t}^{\mathrm{6}} −{t}^{\mathrm{4}} −{t}\right){dt}+\mathrm{10}\int\frac{{t}\left({t}^{\mathrm{2}}…

cos-2x-1-sin-2-x-dx-

Question Number 138691 by liberty last updated on 16/Apr/21 $$\int\:\mathrm{cos}\:\mathrm{2}{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {x}}\:{dx}\:=? \\ $$ Answered by mathmax by abdo last updated on 17/Apr/21 $$\mathrm{I}=\int\:\mathrm{cos}\left(\mathrm{2x}\right)\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\Rightarrow\mathrm{I}=\int\:\mathrm{cos}\left(\mathrm{2x}\right)\sqrt{\mathrm{1}+\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}}}\mathrm{dx} \\…

nice-calculus-find-the-value-of-n-1-1-n-sin-2-n-n-

Question Number 138683 by mnjuly1970 last updated on 16/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:..\:…\:…\:{calculus}… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Theta=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {sin}^{\mathrm{2}} \left({n}\right)}{{n}}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……………………. \\ $$ Answered by Dwaipayan…

I-dx-px-q-ax-2-bx-c-

Question Number 138656 by ajfour last updated on 16/Apr/21 $${I}=\int\frac{{dx}}{\left({px}+{q}\right)\sqrt{{ax}^{\mathrm{2}} +{bx}+{c}}} \\ $$ Answered by Ar Brandon last updated on 16/Apr/21 $$\mathcal{I}=\int\frac{\mathrm{dx}}{\left(\mathrm{px}+\mathrm{q}\right)\sqrt{\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}}} \\ $$$$\mathrm{u}=\frac{\mathrm{1}}{\mathrm{px}+\mathrm{q}}\:\Rightarrow\mathrm{x}=\frac{\mathrm{1}}{\mathrm{up}}−\frac{\mathrm{q}}{\mathrm{p}}\Rightarrow\mathrm{du}=−\frac{\mathrm{p}}{\left(\mathrm{px}+\mathrm{q}\right)^{\mathrm{2}}…

0-1-x-1-x-2-dx-

Question Number 7585 by Tawakalitu. last updated on 04/Sep/16 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx} \\ $$ Commented by sou1618 last updated on 05/Sep/16 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}}…