Question Number 138533 by Ñï= last updated on 14/Apr/21 $$\int_{\mathrm{0}} ^{\mathrm{5}} \left(\mathrm{1}+{x}\right)\delta\left({x}^{\mathrm{2}} −\mathrm{4}\right){dx}=? \\ $$ Commented by Lordose last updated on 14/Apr/21 $$\delta\:\Rightarrow\:\mathrm{Meaning}? \\ $$…
Question Number 7465 by Yozzia last updated on 30/Aug/16 $$\int\frac{{t}^{\mathrm{3}} }{\left({t}−\mathrm{1}\right)^{\mathrm{2}} \left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)^{\mathrm{2}} }{dt}=? \\ $$ Commented by prakash jain last updated on 30/Aug/16 $$=\int\frac{{t}^{\mathrm{3}}…
Question Number 72988 by mathmax by abdo last updated on 05/Nov/19 $${calculate}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{xt}^{\mathrm{2}} } }{\mathrm{4}+{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$ Commented by mathmax by abdo last…
Question Number 138524 by mnjuly1970 last updated on 14/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…….{advanced}\:…\:….\:…\:{calculus}….. \\ $$$$\:\:\:\boldsymbol{\mathrm{I}}:=\int_{\frac{−\pi}{\mathrm{2}}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({tan}\left({x}\right)\right){dx}\overset{???} {=}\frac{\pi}{{e}}{sinh}\left(\mathrm{1}\right) \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 138521 by mnjuly1970 last updated on 14/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…….{Advanced}\:…\:…\:…\:{calculus}…….. \\ $$$$\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\mathrm{2}} {e}^{{x}} }{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{3}} }\:{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:…..\ast\ast\ast\ast\ast\ast\ast\ast….. \\ $$ Answered by Dwaipayan…
Question Number 72986 by mathmax by abdo last updated on 05/Nov/19 $${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } \:\:{cosx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy…
Question Number 138516 by mnjuly1970 last updated on 14/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:………..{calculus}\:…\:…\:…\:\left(\mathrm{I}\right)……… \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{xe}^{{x}} }{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{3}} }{dx}\:=? \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} {x}.{d}\left(\frac{−\mathrm{1}}{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{2}} }\:\right) \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{−{x}}{\left(\mathrm{1}+{e}^{{x}}…
Question Number 7422 by Tawakalitu. last updated on 28/Aug/16 $$\int\frac{{x}^{\mathrm{2}} \:{dx}}{\left({x}\:−\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{4}\right)^{\mathrm{2}} } \\ $$ Answered by Yozzia last updated on 28/Aug/16 $$\frac{{x}^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}}…
Question Number 138485 by SLVR last updated on 14/Apr/21 Commented by SLVR last updated on 14/Apr/21 $${Good}\:{morning}\:{mr}.{W}\:{thanks}\:{for} \\ $$$${your}\:{support}\:.{The}\:{above}\:{is}\:{also}\:{i} \\ $$$${missed}\:{long}\:{ago}..{and}\:{i}\:{couldnot} \\ $$$${retrive}\:{from}\:{the}\:{group}.{kindly}\:{help} \\ $$…
Question Number 7397 by Tawakalitu. last updated on 26/Aug/16 Answered by sandy_suhendra last updated on 27/Aug/16 $${sin}\:{x}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\frac{\mathrm{1}}{{x}}\:{sin}\:{x}\:=\:\frac{\mathrm{1}}{{x}}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}}…